
Running Unix Shell Scripts from the PeopleSoft Process Scheduler  
DAVID KURTZ, 24 FEBRUARY 2017 

It is nearly 10 years since I wrote the original version of this article1.  Very little has change, but I 

have had a number of questions recently, so I thought it was time I checked the script and updated 

the posting.  I have used PeopleTools 8.54 in the preparation of this note. 

The Process Scheduler is essentially just a mechanism for running commands on another server.  

Mostly those commands are to run other PeopleSoft delivered programs.  The exception is the 

Application Engine  Tuxedo server (PSAESRV) where the Process Scheduler submits a service request 

message that is picked up by one of the server processes.   

NB: Although the PSAESRV server is configured by default in the Process Scheduler domain, Oracle 

recommend that you should only use this when you have lots of very short-lived (runtime less than 30 

seconds) application engine processes.  Typically, this only occurs in CRM. 

Process Type Definition 
First you need to create a new process type. I chose to call it ‘Shell Script’.  It runs a named shell 

wrapper script, psft.sh.  The wrapper script calls the script that is to be executed.  Note that the 

command line in the process type definition includes the fully qualified path. 

 

  

                                                           
1
 http://blog.psftdba.com/2007/09/running-unix-commands-and-scripts-from.html 

http://blog.psftdba.com/2007/09/running-unix-commands-and-scripts-from.html


Wrapper Script 
This is the wrapper script that will be called by the process scheduler. 

#!/bin/ksh 
# (c) David Kurtz 2007 
# Script:  psft.sh 
# 
# Syntax:  psft.sh DBNAME ACCESSID ACCESSPSWD PRCSINSTANCE  
# where 
# DBNAME is the name of the PeopleSoft datbase with a corresponding TNS entry 
# ACCESSID is the schema containing the PeopleSoft database 
# ACCESSPSWD is the password to ACCESSID 
# PRCSINSTANCE is the process instance number supplied by PeopleSoft 
# 
# Purpose: To start Standard UNIX Shell Script from Process Scheduler, and interface with the 
PeopleSoft Process Scheduler 
# 07.09.2007 Initial Version 
# 23.02.2017 Remove unnecessary logfiles section 
#set -x  
 
if [ $# -lt 4 ]; then 
  echo "Usage $0: <DBNAME> <ACCESSID> <ACCESSPSWD> <PRCSINSTANCE> <command>" 
  exit 1 
fi 
 
CONNECT=$2/$3@$12 
PRCSINSTANCE=$4 
shift 4 
 
# 
# Function to set status of API aware process instance 
# 
function prcsapi3 
{ 
if [ $# -lt 2 ]; then 
 echo "Parameter Error in function $0" 
 exit 1 
fi 
 
TIMESTAMPCOL=${1} 
STATUS=${2} 
 
if [ ${PRCSINSTANCE} -gt 0 ];then 
  echo "Setting process request ${PRCSINSTANCE} to status ${STATUS}" 
  sqlplus -S /nolog <<! 
set termout off echo off feedback off verify off 
connect ${CONNECT} 
UPDATE psprcsque 
SET    runstatus = ${STATUS} 
,      sessionidnum = $$4 
,      lastupddttm = SYSTIMESTAMP 
WHERE  prcsinstance = ${PRCSINSTANCE} 
; 
UPDATE psprcsrqst  
SET    runstatus = ${STATUS} 
,      prcsrtncd = ${PRCSRTNCD} 
,      continuejob = DECODE(${STATUS},2,1,7,1,9,1,0)5 
,      ${TIMESTAMPCOL} = SYSTIMESTAMP 
,      lastupddttm = SYSTIMESTAMP 
WHERE  prcsinstance = ${PRCSINSTANCE} 
; 
COMMIT; 
exit 
! 
 
  RET=$? 
  if [ ! $RET ];then 

                                                           
2
 The Oracle user ID, password and TNS name for the PeopleSoft database are supplied in the 

first three parameters to the wrapper script. The PeopleSoft Process Instance number is the 4
th

 command line 
parameter. These parameters are then removed with the shift command 
leaving any other parameters that have been specified. 
3
 Function prcsapi sets the status on the process request row and updates the appropriate 

timestamp columns in the Process Scheduler tables.  It is this that makes the script API aware. 
4
 PSPRCSQUE.SESSIONIDNUM holds the operating system process ID of the shell executing the wrapper 

script. 
5
 When the process completes and an end of process status is set (either 9 for success, 3 for 

failure or 2 for delete) CONTINUEJOB is set to 1, otherwise it is set to 0. 



    echo "SQL*Plus Error Return Code: $?" 
  fi 
fi 
} 
 
# 
# Main Execution Starts Here 
# 
 
echo $0:$* 
date 
uname -a 
echo "Current Directory: `pwd`" 
echo "Process log files in: ${PSPRCSLOGDIR}" 
 
PRCSRTNCD=0 
prcsapi begindttm 76  
 
#Run the command 
$*  
PRCSRTNCD=$?7 
 
if [ ${PRCSRTNCD} -ne 0 ]; then 
  prcsapi enddttm 3 # failure 
else 
  prcsapi enddttm 9 # success 
fi 
 
date 

  

                                                           
6
 When the wrapper scripts start it sets the process status on the process request record to 7 indicate that it is 

processing.  This can be seen in the Process Monitor. 
7
 The return code of the executed script is captured. Later it will be recorded on 

PSPRCSRQST.PRCSRTNCD. A non-zero return code indicates an error and the process request status will be set 
to error.  



Process Definition 
Now I can create a process definition that will use the new process type to call the wrapper script to 

execute another command or script. 

The first four parameters passed to the wrapper script are the name of the database, the access ID 

and password, and the process instance. A string of further parameters will be appended in the 

individual Process Definition that is the specific command and parameters to be executed. 

It is important that this new process type is defined as being API aware.  That means the process 

interacts with the Process Scheduler by updating the process status.  You can see how the 

interaction should be done by looking at procedure Update-Process-Status in the delivered SQR 

library prcsapi.sqc. Otherwise, the Process Scheduler cannot determine their status.  Consequently, 

all API-unaware processes have a run status of Success to indicate that they were started 

successfully. 

 

I have written a silly test script called mybanner.sh that I want to be executed by the process 

scheduler.  It just prints out the command line parameters as banner text to both standard output 

and a file called mybanner.log.  This script will be called by psft.sh.   

The Process Scheduler creates a working directory for each process request.  It sets the variable 

$PSPRCSLOGDIR to the fully qualified location of this directory. Note that mybanner.sh changes the 

current directory to the location of this variable so that it writes mybanner.log there, and thus it is 



picked up by the distribution agent and made available via the report repository.  You may wish to 

do this in your scripts. 

Current working directory can be specified at Process Type or Process definition.  However, during 

my testing, I found that these settings had no effect.  The working directory of the script did not 

change, and the value was not found in any environmental variable. 

#!/bin/ksh 
#A silly script to test psft.sh 
#(c) David Kurtz 2017 
#banner function from http://stackoverflow.com/questions/652517/whats-the-deal-with-the-banner-command 
 
if [ "$PSPRCSLOGDIR" ] ; then 
  cd $PSPRCSLOGDIR 
fi 
 
( 
while [ $# -gt 0 ] 
 do 
  /opt/oracle/psft/ptdb/custhome/banner $1 
  shift 
done 
) | tee mybanner.log 
exit $? 

I can now create a Process Definition that uses the Shell Script process type that will execute 

mybanner.sh.  Note that this command line is appended to the existing command line specified in 

the Process Type definition.   

 

You can't quite see it in the screen shot, but the parameter list includes the process instance 

number: 

/opt/oracle/psft/ptdb/custhome/mybanner.sh "Hello World" %%INSTANCE%% 

 



Process Scheduler System Settings  
During my testing, I found that it was necessary to specify output type settings for process type 

other in the Process Scheduler System Settings; otherwise the output files were not posted to the 

report repository. 

 

 

The newly defined Process can be run just as any other process is usually run. Any output from the 

script on the standard output channel is captured by the Process Scheduler and written to a log file 

that can then be viewed from the View Log/Trace facility within Process Monitor. 



In this case the standard output was written to OTH_DMKTEST_<process_instance>.log, and I also 

get the mybanner.log that was written to $PSPRCSLOGDIR  in the list of available files. 

 

mybanner.log just contains the three words passed as parameters 

H     H         ll      ll               
H     H          l       l               
H     H  eeee    l       l       oooo    
HHHHHHH e    e   l       l      o    o   
H     H eeeeee   l       l      o    o   
H     H e        l       l      o    o   
H     H  eeee   lll     lll      oooo    
                                         
W     W                 ll           d   
W     W                  l           d   
W     W  oooo   rr rr    l           d   
W     W o    o   rr  r   l       ddddd   
W  W  W o    o   r       l      d    d   
W W W W o    o   r       l      d    d   
 W   W   oooo   rr      lll      dddd d  
                                         
 33333   99999   99999  5555555  00000   
3     3 9     9 9     9 5       0    00  
      3 9     9 9     9 5       0   0 0  
  3333   999999  999999  55555  0  0  0  
      3       9       9       5 0 0   0  
3     3       9       9 5     5 00    0  
 33333   99999   99999   55555   00000   
                                         



OTH_DMKTEST_39950.log contains the standard output of the entire command - including the 

additional messages emitted by psft.sh (in bold). 

Note that the current directory is reported as being the location of the process scheduler Tuxedo 

domain.   

/opt/oracle/psft/ptdb/custhome/psft.sh:/opt/oracle/psft/ptdb/custhome/mybanner.sh Hello World 39950 
Tue Sep  1 21:59:46 UTC 2015 
Linux hcm.london.go-faster.co.uk 2.6.39-400.215.10.el5uek #1 SMP Tue Sep 9 22:51:46 PDT 2014 x86_64 x86_64 
x86_64 GNU/Linux 
Current Directory: /home/psadm2/psft/pt/8.54/appserv/prcs/PRCSDOM 
Process log files in: /home/psadm2/psft/pt/8.54/appserv/prcs/PRCSDOM/log_output/OTH_DMKTEST_39950 
Setting process request 39950 to status 7 
H     H         ll      ll               
H     H          l       l               
H     H  eeee    l       l       oooo    
HHHHHHH e    e   l       l      o    o   
H     H eeeeee   l       l      o    o   
H     H e        l       l      o    o   
H     H  eeee   lll     lll      oooo    
                                         
W     W                 ll           d   
W     W                  l           d   
W     W  oooo   rr rr    l           d   
W     W o    o   rr  r   l       ddddd   
W  W  W o    o   r       l      d    d   
W W W W o    o   r       l      d    d   
 W   W   oooo   rr      lll      dddd d  
                                         
 33333   99999   99999  5555555  00000   
3     3 9     9 9     9 5       0    00  
      3 9     9 9     9 5       0   0 0  
  3333   999999  999999  55555  0  0  0  
      3       9       9       5 0 0   0  
3     3       9       9 5     5 00    0  
 33333   99999   99999   55555   00000   
                                         
Setting process request 39950 to status 9 
Tue Sep  1 21:59:46 UTC 2015 

 


	Running Unix Shell Scripts from the PeopleSoft Process Scheduler
	Process Type Definition
	Wrapper Script
	Process Definition
	Process Scheduler System Settings


