Running Unix Shell Scripts from the PeopleSoft Process Scheduler
DAVID KURTZ, 24 FEBRUARY 2017

It is nearly 10 years since | wrote the original version of this article’. Very little has change, but |
have had a number of questions recently, so | thought it was time | checked the script and updated
the posting. | have used PeopleTools 8.54 in the preparation of this note.

The Process Scheduler is essentially just a mechanism for running commands on another server.
Mostly those commands are to run other PeopleSoft delivered programs. The exception is the
Application Engine Tuxedo server (PSAESRV) where the Process Scheduler submits a service request
message that is picked up by one of the server processes.

NB: Although the PSAESRV server is configured by default in the Process Scheduler domain, Oracle
recommend that you should only use this when you have lots of very short-lived (runtime less than 30
seconds) application engine processes. Typically, this only occurs in CRM.

Process Type Definition

First you need to create a new process type. | chose to call it ‘Shell Script’. It runs a named shell
wrapper script, psft.sh. The wrapper script calls the script that is to be executed. Note that the
command line in the process type definition includes the fully qualified path.

Type Definition Type Definition Cptions

Process Type: Shell Script
Operating System: LML
Database Type: Qracle
Details
Description: Shell Script
Generic Process Type: I Other v|
Command Line: foptroraclefpsifptdbicusthomerpsi.sh
Parameter List: %% DBEMNAME® % "% %ACCESSID% %" "% BACCESSPSWD % %" % RINSTANCE% %
Wiorking Directony
Output Destination:
I Restart Enabled
Retention Days: 0
[5] save ||[&h Returnto Search =] Matify =5 Add

! http://blog.psftdba.com/2007/09/running-unix-commands-and-scripts-from.html

http://blog.psftdba.com/2007/09/running-unix-commands-and-scripts-from.html

Wrapper Script

This is the wrapper script that will be called by the process scheduler.

1/bin/ksh
(c) David Kurtz 2007
Script: psft.sh

#

#

#

#

s%ntax: psft.sh DBNAME ACCESSID ACCESSPSWD PRCSINSTANCE

where

DBNAME is the name of the PeopleSoft datbase with a corresponding TNS entry
ACCESSID is the schema containing the PeopleSoft database

ACCESSPSWD 1is the password to ACCESSID

z PRCSINSTANCE is the process instance number supplied by PeopleSoft

#

Purpose: To start Standard UNIX Shell Script from Process Scheduler, and interface with the
PeopleSoft Process Scheduler
07.09.2007 Initial Version
i 23.02.2017 Remove unnecessary logfiles section
set -x

if [$# -1t 4]; then

echo "Usage $0: <DBNAME> <ACCESSID> <ACCESSPSWD> <PRCSINSTANCE> <command>"
f_ex1t 1

s

CONNECT=$2/%$3@$12
PRCSINSTANCE=%$4
shift 4

#
Function to set status of API aware process instance
#

function prcsapi3

if [$# -1t 2 1; then

echo "Parameter Error in function $0"
fe_:xit 1

z

TIMESTAMPCOL=${1}
STATUS=${2}

if [${PRCSINSTANCE} -gt 0];then
echo "Setting process request ${PRCSINSTANCE} to status ${STATUS}"
sqlplus -S /nolog <<!

set termout off echo off feedback off verify off

connect ${CONNECT}

UPDATE psprcsque

SET runstatus = ${STATUS}

, sessionidnum = $$4

, Tastupddttm = SYSTIMESTAMP

WHERE prcsinstance = ${PRCSINSTANCE}

UPDATE psprcsrqgst

SET runstatus = ${STATUS}

, prcsrtncd = ${PRCSRTNCD}

, continuejob = DECODE(${STATUS},2,1,7,1,9,1,0)5
, ${TIMESTAMPCOL} = SYSTIMESTAMP

, lastupddttm = SYSTIMESTAMP

WHERE prcsinstance = ${PRCSINSTANCE}

éOI\./IMIT;
exit
1

RET=$?
if [! $RET];then

? The Oracle user ID, password and TNS name for the PeopleSoft database are supplied in the

first three parameters to the wrapper script. The PeopleSoft Process Instance number is the 4™ command line
parameter. These parameters are then removed with the shift command

leaving any other parameters that have been specified.

* Function prcsapi sets the status on the process request row and updates the appropriate

timestamp columns in the Process Scheduler tables. It is this that makes the script APl aware.

* PSPRCSQUE.SESSIONIDNUM holds the operating system process ID of the shell executing the wrapper
script.

> When the process completes and an end of process status is set (either 9 for success, 3 for

failure or 2 for delete) CONTINUEJOB is set to 1, otherwise it is set to 0.

1:_echo "sQL*PTus Error Return Code: $?"
s

fi

}

#
Main Execution Starts Here
#

echo $0:%$*

date

uname -a

echo "Current Directory: “pwd "

echo "Process log files in: ${PSPRCSLOGDIR}"

PRCSRTNCD=0
prcsapi begindttm 76

gRun the command
PRCSRTNCD=$77
if [${PRCSRTNCD} -ne 0]; then
prcsapi enddttm 3 # failure
else
f_prcsapi enddttm 9 # success
s

date

® When the wrapper scripts start it sets the process status on the process request record to 7 indicate that it is
processing. This can be seen in the Process Monitor.

” The return code of the executed script is captured. Later it will be recorded on

PSPRCSRQST.PRCSRTNCD. A non-zero return code indicates an error and the process request status will be set
to error.

Process Definition
Now | can create a process definition that will use the new process type to call the wrapper script to
execute another command or script.

The first four parameters passed to the wrapper script are the name of the database, the access ID
and password, and the process instance. A string of further parameters will be appended in the
individual Process Definition that is the specific command and parameters to be executed.

It is important that this new process type is defined as being APl aware. That means the process
interacts with the Process Scheduler by updating the process status. You can see how the
interaction should be done by looking at procedure Update-Process-Status in the delivered SQR
library prcsapi.sqc. Otherwise, the Process Scheduler cannot determine their status. Consequently,
all APl-unaware processes have a run status of Success to indicate that they were started
successfully.

Process Definition Frocess Definition Qptions Cwerride Options Destination E:'

Process Type Shell Script
Hame DOMETEST

*Description DMKTEST] ¥ ap1 aware

Long Description |A test of the psft.sh ™ Read Only

' Restart Enabled?
Retry Count 1
*Priority | Medium 7 Retention Days 1

*Process Category |Default Q Default Categary

TimesTen Mode I [hd I

System Constraints
Mazx Concurrent 1 Max Processing Time 1| minutes

Fersonalize | Find | £ Lg;’ First ‘4 1 of1 'k

Mutually Exclusive Processies) Lo
as

*Process Type *Process Hame Description

1 Q Q, [+] [=]

EJJ Save | |oh Returnto Search =] Matify =+ Add

| have written a silly test script called mybanner.sh that | want to be executed by the process
scheduler. It just prints out the command line parameters as banner text to both standard output
and a file called mybanner.log. This script will be called by psft.sh.

The Process Scheduler creates a working directory for each process request. It sets the variable
SPSPRCSLOGDIR to the fully qualified location of this directory. Note that mybanner.sh changes the
current directory to the location of this variable so that it writes mybanner.log there, and thus it is

picked up by the distribution agent and made available via the report repository. You may wish to
do this in your scripts.

Current working directory can be specified at Process Type or Process definition. However, during
my testing, | found that these settings had no effect. The working directory of the script did not
change, and the value was not found in any environmental variable.

#!/bin/ksh

#A silly script to test psft.sh

#(c) David Kurtz 2017

#banner function from http://stackoverflow.com/questions/652517/whats-the-deal-with-the-banner-command

if ["$PSPRCSLOGDIR"] ; then
f_cd $PSPRCSLOGDIR
i

(
while [$# -gt 0]
do

/opt/oracle/psft/ptdb/custhome/banner $1
shift

done

) | tee mybanner.log

exit $?

| can now create a Process Definition that uses the Shell Script process type that will execute
mybanner.sh. Note that this command line is appended to the existing command line specified in
the Process Type definition.

Frocess Definition FProcess Definition Qptions Owerride Options Destination Fage Transfer E‘

Process Type Shell Script
Mame DMETEST

Override Options

Parameters
*Parameter List: iAppend vI foptioraclefpsirptdbicusthomelfmybannersh "Hello World" % %NS
*Command Line; INnne vI
Working Directury:l Mone vI
[5] Save | oM Returnto Search | |[=] Motify =4 Add

You can't quite see it in the screen shot, but the parameter list includes the process instance
number:

| /opt/oracle/psft/ptdb/custhome/mybanner.sh "Hello world" %%INSTANCEX%X%

Process Scheduler System Settings
During my testing, | found that it was necessary to specify output type settings for process type
other in the Process Scheduler System Settings; otherwise the output files were not posted to the

report repository.

Process System Process Output Type Frocess Cutput Format Systermn Purge Options E‘

Process Output Type Settings

Process Type: i Cther -

Output Type Options

Process Type Tvpe Active Default Output
Other (Mone) v r

Other File 3 r

Other Printer - r

Other Window r r

Other Email (I r

Other Weh 2 ¥

[5] save

Process System Frocess Qutput Type Process Output Format System Purge Qptions E‘

Process QOutput Format Settings

Process Type: I Other =

Outpurt Destination Type: I j

Output Format Options
Process Type Type Format Default
Other (Mone) {Maone) ¥ ¥
Other File {Mane) v W
Other Web TextFiles "ty W

hdir e nft Wiined — —

The newly defined Process can be run just as any other process is usually run. Any output from the
script on the standard output channel is captured by the Process Scheduler and written to a log file
that can then be viewed from the View Log/Trace facility within Process Monitor.

In this case the standard output was written to OTH_DMKTEST_<process_instance>.log, and | also
get the mybanner.log that was written to SPSPRCSLOGDIR in the list of available files.

Frocess Detail

Help

Yiew LogfTrace

Report

ReportID 12808

Name DmkTEST

Run Status Success

DMKETEST
Distribution Details

Distribution Hode

File List

Hame
CTH_DMETEST_358940 1og
myhannerlog

Distribute To

Distribution 1D Type

Llzar

Return

FRCSET44

Process Instance 39350

Process Type Shell Script

Expiration Date 0ma/20145

Datetime Created
01092015 22:00:01.873331 POT
0952015 22:00:01.873331 PDT

File Size (bytes)
1,514
Qa4

*Distribution 1D
Fs

mybanner.log just contains the three words passed as parameters

H 11
H 1
H eeee 1
HHHHHH e e 1
eeeeee 1
e 1

eeee 11

0000

SSEsSsSs=SsS IIIIIII
=

=
=
S=E=s==s IIT
[e e}
oo0o
=

w w
33333
3

0000

99999 99999
99 9
99 9
999999 999999
9 9

oo

3
3
3333
3
3

3
33333 99999 99999

11
]
1 0000
1 o o
1 o o)
1 o o)
111 0000
11 d
1 d
1 d
1 ddddd
1 d
1 d
111 dddd d
5555555 00000
5 0
5 0 00
55555 0 0 O
500 O
5 5 00 0
55555 00000

OTH_DMKTEST_39950.log contains the standard output of the entire command - including the
additional messages emitted by psft.sh (in bold).

Note that the current directory is reported as being the location of the process scheduler Tuxedo
domain.

/opt/oracle/psft/ptdb/custhome/psft.sh:/opt/oracle/psft/ptdb/custhome/mybanner.sh Hello world 39950

Tue Sep 1 21:59:46 UTC 2015

Linux hcm.london.go-faster.co.uk 2.6.39-400.215.10.e15uek #1 SMP Tue Sep 9 22:51:46 PDT 2014 x86_64 x86_64
x86_64 GNU/Linux

Current Directory: /home/psadm2/psft/pt/8.54/appserv/prcs/PRCSDOM

Process log files in: /home/psadm2/psft/pt/8.54/appserv/prcs/PRCSDOM/1og_output/OTH_DMKTEST_39950

Setting process {equest %9950 to status 7

H H 1 1
H H 1 1

H H eeee 1 1 0000
HHHHHHH e e 1 1 o o
H H eeeeee 1 1 [¢) o
H He 1 1 [¢) o
H H eeee 111 111 0000
w w 11 d
w w 1 d
w W 0000 rr rr 1 d
w W o o rr r 1 ddddd
W W Wo [¢) r 1 d
WWWWwo o r 1 d d

W W o000 rr 111 dddd d
33333 99999 99999 5555555 00000

3 39 99 95 0 00

39 99 95 0 00

3333 999999 999999 55555 0 O O

3 9 9 500 O

3 95 5 00 0

3 9
33333 99999 99999 55555 00000

Setting process request 39950 to status 9
Tue Sep 1 21:59:46 UTC 2015

	Running Unix Shell Scripts from the PeopleSoft Process Scheduler
	Process Type Definition
	Wrapper Script
	Process Definition
	Process Scheduler System Settings

