

G O - F A S T E R CONS U L T A N C Y L T D . U S E O F OR AC L E P L A N S T A B I L I T Y (S T OR E D O U T L I N E S) I N P E OP L ESO F T G L O B A L P A Y R O L L 1

T E C H N I C A L N O T E

USE OF ORACLE PLAN

STABILITY (STORED

OUTLINES) IN PEOPLESOFT

GLOBAL PAYROLL

Prepared By David Kurtz, Go-Faster Consultancy Ltd.

Technical Note

Version 1.00

Monday 19 April 2010

(E-mail: david.kurtz@go-faster.co.uk, telephone +44-7771-760660)

File: gp.stored_outlines.doc, 19 April 2010

Contents

Introduction.. 2

A Simple Example ... 3

Using Stored Outlines in the PeopleSoft GP Engine ... 7

Test Results.. 10

Test 1: Stored Outline Overhead.. 10
Test 2: Stabilising Small Payrolls/Group Lists .. 11

Conclusions.. 13

T E C HN I C A L NO T E - G P . S T OR ED _OU T L I N E S .D OC 2 7 A P R I L 20 1 0

U S E O F OR AC L E P L A N S T A B I L I T Y (S T OR E D O U T L I N E S) I N P E OP L ESO F T G L O B A L P A Y R O L L 2 G O - F A S T E R CONS U L T A N C Y L T D .

Introduction

In PeopleSoft for the Oracle DBA I wrote a page (p. 291) explaining why stored outlines were

not suitable for use in PeopleSoft. Five years later, my view has not significantly changed.

Essentially, stored outlines work best with shared SQL, and there isn't much shared SQL in

PeopleSoft, because a lot of it is dynamically generated.

• Code generated by the component processor is dynamically generated. At save time,

only fields that have changed are updated.

• PeopleCode can written in such a way that where clauses are dynamically assembled

• nVision reports have variable numbers of criteria on literal tree node IDs in the

queries.

• By default in Application Engine, bind variables are converted to literals before the

SQL is submitted to the database. Even if this is overridden by enabling

ReUseStatement in Application Engine or by using Cursor Sharing in the database,

the code still wouldn’t be sharable. Different instances of Application Engine

executing the same program can use different instances on non-shared temporary

records, so the tables in otherwise identical SQL statements are not the same. You

would get one version of the statement per temporary table instance.

However, there are very limited exceptions to this rule. The SQL in COBOL and SQR

programs are more likely to be shareable. Although some programs are coded to generate

SQL dynamically, bind variables are passed through to SQL statements, and they use regular

tables for working storage and not PeopleSoft temporary records

A Global Payroll customer came to me with a problem where the payroll calculation

(GPPDPRUN) would usually run well, but sometimes, the execution plan of a statement

would change and the calculation would take additional several hours. It is significant that the

Global Payroll engine is written in COBOL. My usual response to this sort of problem in

Global Payroll is to add a hint to the stored statement. Usually, I find that only a few

statements that are affected. However, after this happened a couple of times in production, it

was clear that we couldn't continue to react to these problems. We needed to proactively stop

this happening again. This is exactly what stored outlines are designed to do.

2 7 A P R I L 20 1 0 T E C HN I C A L NO T E - G P . S T OR ED _OU T L I N E S .D OC

G O - F A S T E R CONS U L T A N C Y L T D . U S E O F OR AC L E P L A N S T A B I L I T Y (S T OR E D O U T L I N E S) I N P E OP L ESO F T G L O B A L P A Y R O L L 3

A Simple Example

First, I will give a simple example of using a Stored Outline. In order to demonstrate the

control over the optimiser, I am going to use the outline to force the optimiser to do the wrong

thing, rather that to ensure it does the right thing.

I will create a table, and I will put a reasonable number of rows into it. Note that initially I am

not going to create any index.

set autotrace off lines 110

DROP TABLE t PURGE;

CREATE TABLE t(a NUMBER, b VARCHAR2(1000));

TRUNCATE TABLE t;

INSERT INTO t

SELECT rownum, TO_CHAR(TO_DATE(rownum,'J'),'Jsp')

FROM dba_objects

WHERE rownum <= 10000;

When I set create_stored_outlines to a value other than false, Oracle will collect stored

outlines for every SQL statement submitted in that session. Because there is no index on this

table, Oracle has no choice but to use a full table scan.

set autotrace off

ALTER SESSION SET create_stored_outlines = wibble;

select * from t where a = 42;

ALTER SESSION SET create_stored_outlines = FALSE;

I can query the outlines back from USER_OUTLINES

SELECT name, sql_text FROM user_outlines WHERE category = 'WIBBLE';

NAME

--

SQL_TEXT

--

SYS_OUTLINE_10032423060495305

select * from t where a = 42

Now that I have my outline, I will create an index on the table, and collect statistics

CREATE INDEX t ON t(a);

execute sys.dbms_stats.gather_table_stats(ownname=>user,tabname=>'T');

T E C HN I C A L NO T E - G P . S T OR ED _OU T L I N E S .D OC 2 7 A P R I L 20 1 0

U S E O F OR AC L E P L A N S T A B I L I T Y (S T OR E D O U T L I N E S) I N P E OP L ESO F T G L O B A L P A Y R O L L 4 G O - F A S T E R CONS U L T A N C Y L T D .

So, now, without the benefit of outlines, if I run the same query, I get a new execution plan

that uses my new index

SQL_ID 7yj1xfjzasaah, child number 1

select * from t where a = 42

Plan hash value: 2795797496

--

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

--

| 0 | SELECT STATEMENT | | | | 2 (100)| |

| 1 | TABLE ACCESS BY INDEX ROWID| T | 1 | 38 | 2 (0)| 00:00:01 |

|* 2 | INDEX RANGE SCAN | T | 1 | | 1 (0)| 00:00:01 |

--

Predicate Information (identified by operation id):

 2 - access("A"=42)

2 7 A P R I L 20 1 0 T E C HN I C A L NO T E - G P . S T OR ED _OU T L I N E S .D OC

G O - F A S T E R CONS U L T A N C Y L T D . U S E O F OR AC L E P L A N S T A B I L I T Y (S T OR E D O U T L I N E S) I N P E OP L ESO F T G L O B A L P A Y R O L L 5

If I enable the stored outline category, the query for the same SQL goes back to the full scan

specified by the outline. Notice that I needed to flush the Shared Pool because outlines are

applied during hard parse.

ALTER SYSTEM FLUSH SHARED_POOL;

ALTER SESSION SET statistics_level = ALL;

ALTER SESSION SET use_stored_outlines = WIBBLE;

SQL> select * from t where a = 42;

 A B

---------- --

 42 Forty-Two

SQL> select * from table(dbms_xplan.display_cursor(NULL,NULL,'TYPICAL'));

PLAN_TABLE_OUTPUT

--

SQL_ID 7yj1xfjzasaah, child number 0

select * from t where a = 42

Plan hash value: 1601196873

--

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

--

| 0 | SELECT STATEMENT | | | | 16 (100)| |

|* 1 | TABLE ACCESS FULL| T | 1 | 38 | 16 (0)| 00:00:01 |

--

Predicate Information (identified by operation id):

 1 - filter("A"=42)

Note

 - outline "SYS_OUTLINE_10032423060495305" used for this statement

T E C HN I C A L NO T E - G P . S T OR ED _OU T L I N E S .D OC 2 7 A P R I L 20 1 0

U S E O F OR AC L E P L A N S T A B I L I T Y (S T OR E D O U T L I N E S) I N P E OP L ESO F T G L O B A L P A Y R O L L 6 G O - F A S T E R CONS U L T A N C Y L T D .

Now, if I do something to change the text of the SQL, the outline will not apply and the

execution plan will go back to the expected index scan. So in this case my fake GO-FASTER

hint appears to make the plan improve1, but now there is no note to say which outline was

used.

select /*+GO-FASTER*/ * from t where a = 42;

select * from table(dbms_xplan.display_cursor(NULL,NULL,'TYPICAL'));

SQL> select /*+GO-FASTER*/ * from t where a = 42;

 A B

---------- --

 42 Forty-Two

SQL> select * from table(dbms_xplan.display_cursor(NULL,NULL,'TYPICAL'));

PLAN_TABLE_OUTPUT

SQL_ID b8a9mu8xxws1p, child number 0

select /*+GO-FASTER*/ * from t where a = 42

Plan hash value: 2795797496

--

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

--

| 0 | SELECT STATEMENT | | | | 2 (100)| |

| 1 | TABLE ACCESS BY INDEX ROWID| T | 1 | 38 | 2 (0)| 00:00:01 |

|* 2 | INDEX RANGE SCAN | T | 1 | | 1 (0)| 00:00:01 |

--

Predicate Information (identified by operation id):

 2 - access("A"=42)

1 This fake hint is taken from a humorous demo done by Jonathan Lewis

(www.jlcomp.demon.co.uk). The demo is done before any mention is made of store outlines.

The note in dbms_xplan which reports use of the outline rather spoils the joke. It can be

suppressed with –NOTE option thus

select * from table(dbms_xplan.display_cursor(NULL,NULL,'TYPICAL -NOTE'));

2 7 A P R I L 20 1 0 T E C HN I C A L NO T E - G P . S T OR ED _OU T L I N E S .D OC

G O - F A S T E R CONS U L T A N C Y L T D . U S E O F OR AC L E P L A N S T A B I L I T Y (S T OR E D O U T L I N E S) I N P E OP L ESO F T G L O B A L P A Y R O L L 7

Using Stored Outlines in the PeopleSoft GP Engine

Earlier I said that we could apply stored outlines to the Global Payroll calculation engine

(GPPDPRUN) because it generally doesn’t use dynamic code with embedded literal values.

While outlines are being created, the following privilege needs to be granted. It can be

revoked later.

GRANT CREATE ANY OUTLINE TO SYSADM;

We can create a trigger to collect the stored outlines for a payroll calculation, thus:

• The trigger fires when a payroll calculation process starts or finishes.

• At the start a payroll process it starts collecting stored outlines in a category called

the same as the process; GPPDPRUN.

• When the process finishes, outline collection is disabled by setting it back to false.

CREATE OR REPLACE TRIGGER sysadm.gfc_create_stored_outlines

BEFORE UPDATE OF runstatus ON sysadm.psprcsrqst

FOR EACH ROW

WHEN (new.prcsname = 'GPPDPRUN' AND (new.runstatus = 7 OR old.runstatus = 7))

DECLARE

 l_sql VARCHAR2(100);

BEGIN

 l_sql := 'ALTER SESSION SET create_stored_outlines = ';

 IF :new.runstatus = 7 THEN

 EXECUTE IMMEDIATE l_sql||:new.prcsname;

 ELSIF :old.runstatus = 7 THEN

 EXECUTE IMMEDIATE l_sql||'FALSE';

 END IF;

EXCEPTION WHEN OTHERS THEN NULL; --because I don’t want to crash the process scheduler2

END;

/

The exact number of outlines that are collected during this process will vary depending upon

configuration, and which employees are processed as different payroll rules are invoked.

If no more outlines are to be collected the CREATE ANY OUTLINE privilege can be

revoked. This does not prevent the outlines from being used.

REVOKE CREATE ANY OUTLINE FROM SYSADM;

2 I am deliberately suppressing any exception raised by this trigger because I do not want to

crash any process or the process scheduler under any circumstances. I would rather this

trigger doesn’t function correctly.

T E C HN I C A L NO T E - G P . S T OR ED _OU T L I N E S .D OC 2 7 A P R I L 20 1 0

U S E O F OR AC L E P L A N S T A B I L I T Y (S T OR E D O U T L I N E S) I N P E OP L ESO F T G L O B A L P A Y R O L L 8 G O - F A S T E R CONS U L T A N C Y L T D .

Then, the category of outlines can be used in subsequent executions by replacing the trigger

above with the one below, and the execution plans cannot change so long as the SQL doesn’t

change.

CREATE OR REPLACE TRIGGER sysadm.gfc_use_stored_outlines

BEFORE UPDATE OF runstatus ON sysadm.psprcsrqst

FOR EACH ROW

WHEN (new.prcsname = 'GPPDPRUN' AND (new.runstatus = 7 OR old.runstatus = 7))

DECLARE

 l_sql VARCHAR2(100);

BEGIN

 l_sql := 'ALTER SESSION SET use_stored_outlines = ';

 IF :new.runstatus = 7 THEN

 EXECUTE IMMEDIATE l_sql||:new.prcsname;

 ELSIF :old.runstatus = 7 THEN

 EXECUTE IMMEDIATE l_sql||'FALSE';

 END IF;

EXCEPTION WHEN OTHERS THEN NULL; --because I don’t want to crash the process scheduler

END;

/

After running an identify-and-calc and a cancel, we can see how many of the outlines are

actually used.

SELECT category, count(*) outlines

, sum(decode(used,'USED',1,0)) used

FROM user_outlines

GROUP BY category

ORDER BY 1

/

I have a large number of unused outlines because of additional recursive SQL generated

because OPTIMIZER_DYNAMIC_SAMPLING was set 4. This does not occur if this

parameter is set to the default of 2.

CATEGORY OUTLINES USED

------------------------------ ---------- ----------

GPPDPRUN 572 281

I can then remove the unused outlines.

EXECUTE dbms_outln.drop_unused;

2 7 A P R I L 20 1 0 T E C HN I C A L NO T E - G P . S T OR ED _OU T L I N E S .D OC

G O - F A S T E R CONS U L T A N C Y L T D . U S E O F OR AC L E P L A N S T A B I L I T Y (S T OR E D O U T L I N E S) I N P E OP L ESO F T G L O B A L P A Y R O L L 9

Used flags on the outlines can be reset, so we later we can see the outlines being used again.

BEGIN

 FOR i IN (SELECT * FROM user_outlines WHERE category = 'GPPDPRUN') LOOP

 dbms_outln.clear_used(i.name);

 END LOOP;

END;

/

If I want to go back running without outlines, I just disable the trigger

ALTER TRIGGER sysadm.stored_outlines DISABLE;

To re-enable outlines, just re-enable the trigger.

ALTER TRIGGER sysadm.stored_outlines ENABLE;

T E C HN I C A L NO T E - G P . S T OR ED _OU T L I N E S .D OC 2 7 A P R I L 20 1 0

U S E O F OR AC L E P L A N S T A B I L I T Y (S T OR E D O U T L I N E S) I N P E OP L ESO F T G L O B A L P A Y R O L L 1 0 G O - F A S T E R CONS U L T A N C Y L T D .

Test Results

Test 1: Stored Out l ine Overhead

I have run various payroll identify & calculations on with and without outlines in two

environments with the same code-line but with differing volumes of data.

Environment 1

281 Outlines

2770 Payees

9041 Segments

Test Duration Comment

Collecting Outlines 00:09:17 Didn't flush shared pool

Using Outlines 00:08:18 Flushed Shared Pool prior to recalc

Baseline 00:07:16 Flushed Shared Pool prior to recalc

Environment 2

353 Outlines

6804 Payees

17625 Segments

Test Duration

Collecting Outlines 00:38:17

Using Outlines 00:39:04

Baseline 00:42:51

This shows that stored outlines do not have an excessive run-time overhead, probably less than

an operational variances in this test. The overhead does not seem related to the data volumes

being processed. I speculate that the overhead of running with outlines might be outweighed

by a saving in parse.

2 7 A P R I L 20 1 0 T E C HN I C A L NO T E - G P . S T OR ED _OU T L I N E S .D OC

G O - F A S T E R CONS U L T A N C Y L T D . U S E O F OR AC L E P L A N S T A B I L I T Y (S T OR E D O U T L I N E S) I N P E OP L ESO F T G L O B A L P A Y R O L L 1 1

Test 2: Stab i l is ing Small Payro l ls/Group L ists

I have experienced unstable execution plans with processing of small Payrolls in an

environment with a much larger streamed payroll, and with Group Lists in environments

where partitioning has been introduced to support.

The Global Payroll result tables need to be range partitioned to match the stream definitions.

The problem lies with the small payroll having employees scattered across many partitions,

while the large payroll only works in a single partition.

A set of stored outlines were created for a full payroll identification and calculation process

for the larger payroll, and applied to all subsequent payrolls. Now, I want to prove not only

that the outlines were used, but that they have a beneficial effect.

I have three test scenarios.

1. A large streamed payroll calculation was run. It ran without using outlines for 2h

42m, which can considered to be good performance (in fact I used this process to

collect the stored outlines).

2. Executed a small non-streamed payroll calculation without outlines. This ran for

over 8 hours before it was cancelled. Hence, I don’t have data for all statements for

this scenario.

3. Execute a small non-streamed payroll calculation again, but this time with outlines

enabled. It ran for 2h5m. Not great, considering it has a lot fewer payees than a

single stream of the large payroll, but better than scenario 2.

Ideally I should disable outlines again and prove that performance reverts.

T E C HN I C A L NO T E - G P . S T OR ED _OU T L I N E S .D OC 2 7 A P R I L 20 1 0

U S E O F OR AC L E P L A N S T A B I L I T Y (S T OR E D O U T L I N E S) I N P E OP L ESO F T G L O B A L P A Y R O L L 1 2 G O - F A S T E R CONS U L T A N C Y L T D .

I can use the ASH3 data to see whether the execution plan changed, and what effect that had

on performance.

SQL_ID SCENARIO 1 ASH_SECS SCENARIO 2 ASH_SECS SCENARIO 3 ASH_SECS

------------- ------------------- ---------- ------------ ---------- ------------ ----------

4uzmzh74rdrnz 2514155560 280 3829487612 28750 **SAME** 50234

4n482cm7r9qyn 1595742310 680 869376931 140 **SAME** 8895

2f66y2u54ru1v 1145975676 630 **SAME** 531

1n2dfvb3jrn2m 1293172177 150 **SAME** 150

652y9682bqqvp 3325291917 30 **SAME** 110

d8gxmqp2zydta 1716202706 10 678016679 10 **SAME** 32

2np47twhd5nga 3496258537 10 **SAME** 27

4ru0618dswz3y6 2621940820 10 539127764 22

4ru0618dswz3y 539127764 100 **SAME** 22

4ru0618dswz3y 3325291917 10 539127764 22

4ru0618dswz3y 1403673054 110 539127764 22

gnnu2hfkjm2yd 1559321680 80 **SAME** 19

fxz4z38pybu3x 1478656524 30 4036143672 18

2xkjjwvmyf99c 1393004311 20 **SAME** 18

a05wrd51zy3kj 2641254321 10 **SAME** 15

3 Timings for Scenarios 1 and 2 are only accurate to 10 seconds because this is based on the

ASH repository exposed in DBA_HIST_ACTIVE_SESS_HISTORY, whereas Scenario 3 is

accurate to 1 second because it was based on recent history in v$active_session_history. See

Practical ASH presentation and paper on http://www.go-faster.co.uk.

4 On the small payroll calculation, without outlines, this statement move than 100 times

longer. It had not completed by this stage – the process was cancelled. With outlines enabled

this statement used the same execution plan as in scenario 1. It didn’t perform that well

compared to the large payroll calculation; clearly more work is required for this statement.

However, at least it did complete and it did result in improved performance for the small

payroll.

5 This is an example of a statement that performed better on the small payroll without an

outline. So, sometimes it is better to let the optimiser change the plan!

6 This statement executed with 4 different execution plans during the large payroll, but once

the outline was applied only one was used, and this seems to be

2 7 A P R I L 20 1 0 T E C HN I C A L NO T E - G P . S T OR ED _OU T L I N E S .D OC

G O - F A S T E R CONS U L T A N C Y L T D . U S E O F OR AC L E P L A N S T A B I L I T Y (S T OR E D O U T L I N E S) I N P E OP L ESO F T G L O B A L P A Y R O L L 1 3

Conclusions

Stored Outlines have very limited application in a PeopleSoft system. However, they can

easily be collected and used with the PeopleSoft Global Payroll engine. It is just a matter of

granting a privilege and using the database triggers on the process request table.

Testing that they actually have the desired effect is quite difficult, because you are trying to

prove a negative. I don’t think it is adequate simply to say that the outline has been used.

• First you would need an environment where payroll calculation performs well, where

you could collect outlines.

• Then you would need a payroll calculation that performs poorly because the

execution plan for at least one SQL statement is different

o Either, on a second environment with exactly the same code.

o Or in the same environment on a different set of data.

• Then, it would be possible to demonstrate that applying the outline causes the

execution plan to revert and restores the performance. This can be confirmed by

comparison of the ASH data for the various scenarios.

Even if you don’t want to use a stored outline immediately, it might be advantageous to collect

them, and have them available when you do encounter a problem.

