T E C H N 1 C A L N o T E

FACTORS AFFECTING
CONCURRENT TRUNCATE
DURING BATCH PROCESSES

Prepared By David Kurtz, Go-Faster Consultancy Ltd.

Technical Note

Version 1.00

Thursday 2 April 2009

(E-mail: david.kurtz@go-faster.co.uk, telephone +44-7771-760660)
File: local write wait.doc, 2 April 2009

Contents
AT H g0 16 1815 o) s FON PR RRRRRRRt 2
REAL PIODICINS ... e e e e e et e e e et e e e eenaeeeeenneeeenn 3
St ettt et e e — e e e e e e e e ————aeeeeeee———aaeeeeeaaaarraaeeeeeeaanrres 5
= A TR 6
SCALADIIIEY ..eevvieiiieeie ettt ettt e e st e st e e et e e s beeeabeesnbaeenbeesrbeeenbeesnbeeenseesnbaeenreenn 9
Global Temporary TabIEsc.cccciiiiiiieiieeiieeie et ete et eee e e eree e e eeeeebeeesseeesaeenaneenns 10
General ReCOMMENAATIONSoooeiuviiiieieeeicieee e et eee e e e e e e e e e e e e eeaaeeeeenneeeeeneeeeas 10
PeopleSoft ReCOMMENAATIONSccveeriiiieiieriieiieieeie ettt et esaessaeneees 11
Oracle Bug 4224840/4260477ocuveeereieieeieerieie et eitestesessesseeseeseessessessessessesseeseessassessessens 12

©G0-FASTER CONSULTANCY LTD. - CONFIDENTIAL FACTORS AFFECTING CONCURRENT TRUNCATE DURING BATCH PROCESSES 1

TECHNICAL NOTE - LOCAL_WRITE_WAIT.DOC 30 JuLy 2009

Introduction

Over the past year, I have seen problems with Local Write Wait! in the Oracle database on
two different Oracle systems. One occasion was in a PeopleSoft Time and Labour batch
process, the other was in a custom PL/SQL process in non-PeopleSoft system.

In both cases, normal tables in the databases were being used for temporary working storage
before that data was then written to another table. The content of the working storage tables
was then cleared out by periodically truncating them. In order to increase overall batch
throughput, several instances of the program were run in parallel. The resulting concurrent
truncate operations contended with each other, and the processes did not scale well.

I have written about this subject previously in my blog2. These problems have prompted me
to do some research and testing. I am now able to make definite recommendations.

Oracle Note 334822.1 (which I have also quoted before) provides a good technical description
of the database’s internal behaviour. It warns that ‘processes that involve temporary tables
being truncated and repopulated in multiple, concurrent batch streams may present this
situation. The underlying problem is [that the Oracle database has] to write the object's dirty
buffers to disk prior to actually truncating or dropping the object. This ensures instance
recoverability and avoids a stuck recovery. It seems at first glance perfectly reasonable to
simply truncate a temporary table, then repopulate for another usage. And then to do the
temporary populate/truncate operations in concurrent batches to increase throughput.

‘However, in reality the concurrent truncates get bogged down as the database write process
gets busy flushing those dirty block buffers from the buffer cache . You will see huge CI
enqueue waits.

‘The foreground process first acquires the RO enqueue in exclusive mode so that an object
can be flushed out of buffer cache. Then the CI enqueue is held so that cross instance calls
(CIC) can be issued to background processes. The CKPT process executes the CIC by
scanning the whole buffer cache for the candidate blocks and moves the dirty blocks to a
special list so that the DBWR [database writer] processes can write them out. This CIC
completes after all the blocks have been either written out or invalidated. The RO enqueue is
then released by the foreground so that another session can proceed with its drop or truncate
operation’.

Put simply; truncate (and drop) operations serialise. Only one process can truncate at any one
time. If you have multiple concurrent processes all trying to truncate their own working
storage tables, you could experience performance problems. Such processes not scale well as
the number of concurrent processes increases.

I My thanks to Jonathan Lewis (www.jlcomp.demon.co.uk,
http://jonathanlewis.wordpress.com) for his assistance in understanding this issue. Any
mistakes remain my own.

2 http://blog.psftdba.com/2008/01/global-temporary-tables-and-peoplesoft.html

FACTORS AFFECTING CONCURRENT TRUNCATE DURING BATCH PROCESSES 2 ©G0-FASTER CONSULTANCY LTD. - CONFIDENTIAL

30 JuLy 2009 TECHNICAL NOTE - LOCAL_WRITE_WAIT.DOC

Real Problems

In the case of the non-PeopleSoft PL/SQL process, I was able to recreate the working storage
tables as Global Temporary Tables (GTTs) that deleted the rows on commit because the
process committed only when each transaction was complete. Local write wait totally
disappeared in this case. Temporary objects do not need to be recovered, so this mechanism
does not apply to them.

The PeopleSoft scenario involved one of the ‘Time & Labor’ batch processes,

TL TIMEADMIN. However, GTTs cannot easily be introduced into the T&L batches
because there are ‘restartable’. Therefore, the contents of temporary working storage tables
need to be preserved after the process and its session terminates. This precludes the use of
GTTs.

Below is an event profile produced from an Oracle 10g SQL Trace of an instance of
TL _TIMEADMIN. Several other instances of the same program were running concurrently.

Event Name % Time | Seconds | Calls - Time per Call -

Avg Min Max

local write wait 19.9% | 25.7509s 897 | 0.0287s | 0.0000s | 0.9845s
unaccounted-for time 19.0% | 24.6180s

EXEC calls [CPU] 17.9% | 23.2000s | 41,398 | 0.0005s | 0.0000s | 1.9700s
db file sequential read 13.1% | 16.9244s 7,745 | 0.0021s | 0.0001s | 0.0970s

eng: RO - fast object reuse 11.2% | 14.5646s 272 | 0.0535s | 0.0000s | 1.8118s

PARSE calls [CPU] 5.6% | 7.2300s | 15,241 | 0.0004s | 0.0000s | 0.8400s

You can see that the combination of ‘Local Write Wait’ and ‘enq: RO - fast object reuse’
account for 31% of the total response time. This is a significant proportion of the total
response time.

©G0-FASTER CONSULTANCY LTD. - CONFIDENTIAL FACTORS AFFECTING CONCURRENT TRUNCATE DURING BATCH PROCESSES 3

TECHNICAL NOTE - LOCAL_WRITE_WAIT.DOC

30 JuLy 2009

Individual truncate commands are taking anything up to 1.8 seconds. This example from the
same process is typical.

Call | Cache | Count - Seconds - Physical - Logical Reads - Rows
Misses Reads
CPU Elapsed Consistent | Current
Exec 0 1| 0.0300s | 1.6489s 17 197 84 0
Event Name % Seconds | Calls - Time per Call -
Time
Avg Min Max

local write wait 53.1% | 0.8684s 7 | 0.1241s | 0.0313s | 0.5529s
eng: RO - fast object reuse 42.4% | 0.6938s 2] 0.3469s | 0.1896s | 0.5041s
db file sequential read 2.6% | 0.0421s 17 | 0.0024s | 0.0002s | 0.0184s
Total 100.0% | 1.6362s

e 'local write wait' occurs (as the name suggests) when the session is waiting for its
own write operations. The RO enqueue is used to protect the buffer cache chain
while it is scanned for dirty blocks in an object for the database writer to then write to
the data files.

e ‘eng: RO - fast object reuse’ occurs when a process waits to acquire the RO enqueue,
in other words, while somebody else is truncating or dropping an object.

Two factors affect the time for which the RO enqueue is held:

1. The time taken to write the blocks to disk. Processes that are frequently truncating
temporary working storage are also doing a lot of DML operations to populate the
working storage and other tables. The disks under the data files are going to be busy.
If the disk becomes a bottleneck, the duration of the local write wait will certainly

increase.

il. The time taken to scan the buffer cache for dirty blocks to be written to disk and
flushed from cache. The larger the buffer cache, the longer it will take to find these

blocks.

The Metalink note also suggests using a different block size, saying that “a separate buffer
pool for temporary tables will also reduce RO enqueue”. It is not clear whether it is more
important to have a different block size or a separate buffer pool. T wanted to find out which

factor was more important.

FACTORS AFFECTING CONCURRENT TRUNCATE DURING BATCH PROCESSES 4

©G0-FASTER CONSULTANCY LTD. - CONFIDENTIAL

30 JuLy 2009 TECHNICAL NOTE - LOCAL_WRITE_WAIT.DOC

Test

I created a simple test to model the behaviour of T&L. I created pairs of simple tables,
populated one of each pair, and then repeatedly copied the data back and forth between them,
truncating the source after the copy.

INSERT INTO lwrl2 SELECT * FROM lwrll;
TRUNCATE TABLE lwrll;
INSERT INTO lwrll SELECT * FROM lwrl2;
TRUNCATE TABLE 1lwrl2;

I wanted to test the effect of various options:

e Block Size: I created tables in tablespaces with 8Kb, 16kb, 32KB blocks. I also
repeated the tests in databases with a default block size of 8kb and 16kb, but on the
same physical server.

e Buffer Pool: I also created a RECYCLE pool for the default block size.

e Extent Size: I created tables with an automatically allocated extents size and with a
larger uniform extent size. I only tested a 1Mb uniform extent size

e REUSE STORAGE: I tested the effect of truncating the tables with this option.
e Delete: I wanted to compare the performance of delete (which has to write undo
information to the redo logs) with truncate (that will serialise on the RO enqueue and

wait for local writes).

e Global Temporary Tables: I want to test the behaviour of both truncate and delete on
GTTs.

e Concurrency: [ran 5 and 10 test scripts concurrently to see how truncate scales.

e Indexes: I repeated tests with and without indexes on the temporary tables.
The test script has evolved into a PL/SQL package procedure, mainly so that the tests could be
submitted to and run concurrently by the Oracle job scheduler. There are also procedures to

create, populate, and drop the pairs of working storage tables. It is available on my website>.

I have run the tests on Oracle 10.2.0.3 on various platforms with similar results.

3 The test script and package procedure can be downloaded from http:/www.go-
faster.co.uk/scripts.htm#lwr

©G0-FASTER CONSULTANCY LTD. - CONFIDENTIAL FACTORS AFFECTING CONCURRENT TRUNCATE DURING BATCH PROCESSES 5

9 S3SS300¥d HOLYE ONIYNA ILYONNY | INFHYNONOD ONILOI44Y SHOLIV S

TYILNIAI4NOD - "dLT AONYLINSNOD ¥3LSV4-090

“JALL JO 9ZIS JUSIXD WLIOJIUN B YIIM DZIS YO0[q qTE HNSALISAQ SeM SIY o

1891 AU} JO suon1Adal [BIOAIS WO JBM € [INS JO SINOO0 AJUO JY) S 38) SIYJ, "SNO[BWOUR ST JUIAD SIY} UT 1) YIJe], JIBM JO QOUILINII0 Y], ¢

"SpUu029s ¢6

10§ PAJUNOIIE DJLIUNT} Y} YIIYM JO ‘SPUOIIS [/] OO} }$3} [0YM Y], "dZIS 300[q pue [00d 19§3nq JNeJd "SWI)SAS JSOW J0J OLIBUIIS J[NBJIP Y} SI SIY, 4

09'L S0'€C /16€ | €0€ | G899 | Ol W1 Wwiopun MZE
8l 8602 19y | vL€ | 21299 | 8zl 9)e00|[EOINY MZ€E
1z 9v'0C v1'€S | 162 | c¢6L | €2l W1 wiojun M9l
80'} RZ4 812G | Z0€ | 6908 | IEl 5]e00|[E0INY M9l | ebeiois
171 Sz9C 8225 | 96 | 9228 | evl W1 Wiojun | 370A03Y M8 asnay
1G°) 002 0199 | 6€€ | 90°€0L | 081 8]ed0|[Eo)NY | I1OADTY M8
851 68°0€ 86/S |22t | 29€6 | LSL W1 wiopun | 17Nv43d M8
s 91ze \v'6S | ¥S€ | 28’86 | 061 sjeoojeojny | 1INv43d M8
€C’€ 000 €22 9z2€ | €LY | 6649 | 966 1 wiopun 43
L'} 109 0gie €08 | 08'Z | Z6'WL | €€l 5]e00|[eo)NyY MZe
502 900 Z0'61 V€IS | 0LV | 1628 | €Ll W1 wiojun M9l
951 8z'8 80°tC LOYS | 818 | LL€6 | LEL 8]e00|[EOINY M9l S
8v'e | 918l 00 zl'sT €GGy | SOV | 8526 | 29l W1 Wwiojun | 310A03d 8
60°C 229 89°/2 966G | 8¥'6 | e¥'S0L | 10T 8]ed0|[Eo)NY | I1OADTY M8
Zre €10 2962 219 | vrv | €86 | £vl W1 wiopun | 1INv43d M8
g9l 699 0z'SC SIS | 898 | Z£€6 | ybll sjecojeony | 1INv43a 8
SE e NIERE| %007 1EM 0od | NdD | reoL uoneing adk1 [00d 873
yoie ayoeD Moy AN 00T :bue pasde|q aoedsse|qe | Jayng 3o0|g

ssooo01d 1od sojeounny)] e

$9550001d JULIINOUOD S °

9718 300[q NEJOP 38

“JIeM 9JLIM [BOO] 9STED 9} 0} JUSIOIJNS UBY) 9IOW SeM $3SS9001d JUQLINOUOD § PuUNoj [I0AIes NdD-Nnw a5Ie] € U0 USAT

| 1S9l

/ $38S300dd HOLVYE ONIYNA FLVONNY] INIFHINONOD ONILOI44Y SHOLIVS

TYILNIAI4NOD - "dLT AONYLINSNOD ¥3LSV4-090

JOYJLL ut s10110 Surpunol £q pasned aIe SI9quINU dATBIoU oy [,

's9[qe) Arerodurd) oyj 0JUT SMOI JIOSUT 0} US¥e) dWi) Ay} JUIpn[oul s9) aI1ud ay) 10 st uonein posde[q oy L

66°0- 16°€ 1414 4404 99’y Lv'LL | G6'¥9L | L9C AL wiolun MCE
009 000 AR 6.'GY Y'e 69'CL | 899l | €/¢C ajeoo|jeciny MCE
0S'vC | €6'SC 12°6€ yG'€€ 90’V 06°'LL | 066l | 85¢C N wiojiun M9l
€9¢l L9V 1WA 09°'GYy €e's /€1, | 0L°98L | 6S¢C ajeoo|eciny M9l —
120 000 G9'¥S €1'GE 860 ¢/L'GL | L1299l | L/L¢C WL wiojun | 3TO0AD3Y M8
180 000 619y €G'9¢ €¥'0 9G6'G. | 8G'6Sl | L8C djedojeciny | 370A03d M8
Ll 000 G6'€S A4 €81 ¥¢'9. | GG'€8L | G6¢C WL wiolun | 17Nv43d M8
yeL- 000 LE'E9 £6'6V 6C'L 862, | LL'L6L | 60E ajeoojeoclny | 17Nv43d M8
SYETiTe) STEIV (e101dwoauy) uons|dwod) aoedg NndoD |elo uoneing adA] |00d 9zIS
Jayng youms aji4 6o youms aji4 6o | 1aung 6o pasde|3 aoedsa|ge | Jayng 3o0|g
994

00Q°LIVM™ 3LI¥M ™ IY001 - 3LON TVOINHOI |

‘peolsul pg LA TAC 91 SMOI A} UM SINSAT o} Ik 9saY) ‘uostredwod 104

‘NI Pasn [— 9ZIS JUIX9
wrojrun 931e] © pue d0edso[qe; Q¢ & Sursn Aq ewooino a[qrssod 3sod oy pue ‘swoysAs jsowr 1o Jurod Sunels 9A09IJe Oy} Ik p[oq ur samsSiy oy L,

600¢ ATNF 0€

TYILNIAI4NOD - "dLT AONYLINSNOD ¥3LSV4-090 8 §3SS300¥d HOLYE ONIYNA ILYONNY | INFHHNONOD ONILOI44Y SHOLIV S

£€9'0- Zl'6v €g'ell LL°€E8 121G ¥¥'08 | 0G°€8E | 969 L wiojiun MZE
.10 cv'9s ¢.'901 cv'88 /1°'8S 8€'08 | 82°06¢ | 6.9 8jedo|eoiny MCE
12's¢ | ¥2'0lc 16°'69 6815 8¢€'0¢C 0G'L8 | §C'¢Sv | 199 Nl wiojiun M9l
12’0 G5'0L 9G'ecl 0Z'.l6 81¢s 99'C8 | 9¢'9¢v | 069 8jedo|eoiny M9l a1919Q
L¥'0- 98'. 8’81 ¥8°G6 Sl Ly ¥¥'88 | 96°LLY | G19 WL wiojiun | 370AD3Y M8
¥6'vL | ¥E'GL 19'C/LL 6%'8. 96 vy 1898 | LZ’Ely | 999 8jedojeoiny | 3T10AD3Y M8
ge'L- 000 62'€61 09'LLL 9L'v¥S LE'68 | LO'LvY | SP9 N wiojlun | 11Nv43d M8
16'¢ 000 §9'95¢ L6'¥6 0,.°'€S 1906 | 06'86% | 891 8jedojeoiny | 11Nv43d M8
siayl0 STEIVY (e191dwoouy) uonadwon aoedg ndo |elo uoneing adA| |ood 9zI1S

layng youms aji4 6o youms aji4 6o | Jeyng 607 pasde|g aoedss|ge | Jayng 3oo|g

2914
69'S ¥€'19 1092 29t | 99'¢SlL | 9¢gC Nl wiojiun MCE
8¥'S 65'6. Zy'es or'e | 68°LYL | LLL 8jedo|eciny MCE
4 €908 0G°S8 ¥9'€ | 16921 | L2 WL wiojiun M9l
S6'Y 1116 1219 6.°€ | 84291 | L0C 8]jeoo|eoiny M9l abelo)s
L0y GZ'/9 ¥O'LLL | 6V | 69°98L | 90€ WL wiojiun | 370AD03Y M8 asnay
[A°R 8,9 8796 ¢Sy | 002 | 092 8jeoojeociny | 370A03Y M8
66°C 9/°€9 8€'90L | €l'¥y | 9¢'8/1 | 99¢ N uwuojiun | 11Nv43d M8
G6'¢ 8189 8066 8G'y | 64°GLl | 68C 8jedojeoiny | 17Nv43d M8
0€'9 LL'0 €e'es S6°'€L Yo'y | €€°L8L | LLL Nl wiojiun McE
89/ 20y 98'8Y 8.8 €8°L | 1292 | 991 8]jedo|eoiny MZe
24 710 G.'6S 65°'G6 ov'vy | 29'991 | 60C Nl wiojiun M9l
¥Z'v 0l'8 8G°0S 29'¢L /2’8 | L8'Eyl | 861 8jedo|eoiny M9l ynessq
8.8 00 01’69 L7'€6 6v'y | 98°GLl | ¥2C WL wiojiun | 370AD03Y M8
20'¢ gecl ¥1'8y 85101 | 96'8 | STvLl | e¥C 8jedojeoiny | 370AD3Y M8
Zs’s 0L0 19'G. G9'¢C6 €9'v | 16821 | G¢C WL wiojun | 11Nv43d M8
G689 9¢€'0l L¥'0S 12°€9 16’8 | 98°6€L | CEC 8jedojeoiny | 17Nv43A M8
sisyio 83l4 3007 Hep od NdD | leloL uonelinQg adAL |ood £Z41)

yore ayoeD) Moy UM [ED07] :bua pasde|3 aoedsa|qe | Jayng 3o0|9

ssooo0i1d 1od sojeounny)] e

$9s$0001d JUSIINOUOD (O]

9Z1S Y00[q J[NBJOP 438 e
¢ 189

6002 AINM 0€ 200 LIVM™ILINMTIVO0T - FLON T¥OINHOI]

Scalability

The following table compares the timing for 10 concurrent tests to the corresponding timings

for 5. Scalability is calculated as

Where:
e t,=timing for n concurrent processes
e s=scalability

So, if the time for 10 concurrent processes was:

e the same as that for 5 processes, that would be 100% scalability. The number of

processes has no bearing on performance.

e exactly twice that for 5 processes, that would be 0% scalability. The overall

throughput does not improve as the number of processes increases

e more than twice that for 5 processes, that would be negative scalability. The overall
throughput of the processes goes down as the number of processes increases

Block | Buffer Tablespace | Elapsed . Loc;al Row
Size | Pool Type Duration enq: | Write | Cache
Total | CPU RO Wait | Lock
8K DEFAULT | Autoallocate A7% | 34% | 95% | 62% 0% 29%
8K DEFAULT | Uniform 1M 27% | 10% | 92% | 33% | -22% | 160%
8K RECYCLE | Autoallocate 65% | 21% | 112% | 18% | 15% -1%
Default | 8K RECYCLE | Uniform 1M 45% | 11% | 107% -3% | -26% 14%
16K Uniform 1M 8% 0% | 86% | 20% | -36% | -14%
32K Autoallocate 60% | 19% 99% | 32% | -13% | 202%
32K Uniform 1M 12% | -10% | 78% | -13% | -15%
8K DEFAULT | Autoallocate 31% | 12% | 55% | 20% -6%
8K DEFAULT | Uniform 1M 14% 5% | 56% 9% -3%
Reuse | 8K RECYCLE | Autoallocate 38% | 20% 50% | 37% -5%
Storage | 8K RECYCLE | Uniform 1M 7% | -11% | 35% 6% | -22%
32K Autoallocate 50% -6% 85% | 56% | -48%
32K Uniform 1M 7% | -12% | 67% 3% | -32%
Block Size | Buffer Pool | Tablespace Type | Elapsed Duration | Total
8K DEFAULT | Autoallocate -20% | -23%
8K DEFAULT | Uniform 1M -9% | -18%
Delete 8K RECYCLE | Autoallocate -16% | -23%
8K RECYCLE [Uniform 1M -20% | -20%
32K Autoallocate -6% | -15%
32K Uniform 1M -12% | -14%

©G0-FASTER CONSULTANCY LTD. - CONFIDENTIAL

FACTORS AFFECTING CONCURRENT TRUNCATE DURING BATCH PROCESSES 9

TECHNICAL NOTE - LOCAL_WRITE_WAIT.DOC 30 JuLy 2009

Global Temporary Tables

For the sake of completeness I have also tested the behaviour of Global Temporary Tables on
a database with an 8Kb block size. The mechanism described above does not apply to
temporary objects, so there is no wait at all on either local write wait, RO enqueue, or row
cache lock. Also, DML operations on GTTs do not generate redo. Hence, with one exception,
the test performs better than with permanent objects.

Elapsed Duration Number of Concurrent Processes
Operation | GTT Type 5 10
PRESERVE 19 30

Truncate | DELETE 7 7
PRESERVE 154 290

Delete DELETE 6 4

The exception is the delete operation on tables that preserve rows on commit. In this case the
delete operation generates undo and writes to the redo log files can still become a bottleneck.

General Recommendations

If you have to store temporarily working data in a database table, it is much better to use a
Global Temporary Table, although the design of the application may preclude this. It is not
possible to do this with data used by restartable Application Engine processes, because the
contents of the GTT would be lost when the process terminates.

The Metalink note references unpublished bug 414780 in which a PeopleSoft customer
reported this problem, but “they seemed to fix it by changing some PeopleSoft code to
implement delete” rather than truncate on small temporary tables”. However, my tests show
that this probably degraded performance further. The individual delete statements take longer
than the truncate operations, and the overall test times increased. Although the truncate
operations serialise on the RO enqueue and wait for local writes, this is still better than
deleting the data and waiting for the undo information to be written to the redo log.
Furthermore, although the truncate operations did not scale well, the delete operations
exhibited negative scalability for the same volumes and concurrency. They became
bottlenecked on redo log.

Using a recycle pool of the same block size as the rest of the database was not effective;
possibly because these pools use the same LRU latches.

Using a larger non-default block size improved performance of truncate, and of the overall
test. The performance with 32Kb blocks was better than with 16Kb.

Using a larger uniform extent size produced the best the performance for truncate and the test
as a whole. Fewer, larger extents were involved, hence less time was spent on CPU and row
cache lock. The overall thoughput truncate operations degraded as the number of processes
increased, although, the throughput of the test as whole did scale.

7 You could do this by reducing the number of temporary table instances available on all
Application Engine programs that reference the table to 0, forcing use the shared instance, and
automatically changing the behaviour of the %TruncateTable macro to delete.

FACTORS AFFECTING CONCURRENT TRUNCATE DURING BATCH PROCESSES 10 ©G0-FASTER CONSULTANCY LTD. - CONFIDENTIAL

30 JuLy 2009 TECHNICAL NOTE - LOCAL_WRITE_WAIT.DOC

The presence or absence of indexes did not have a significant effect on the relative test
timings, and does not alter my advice.

The effect of truncating with the REUSE STORAGE option is less clear cut. There are no
waits on row cache lock because the blocks do not have to be cleared out of the buffer cache,
but on the other hand more time is spent on local write wait because all the dirty blocks have
to be written to disk, hence the RO enqueue is held for longer and more time is spent on eng:
RO - fast object reuse. If you are using an AUTOALLOCATE tablespace then you would be
better to use REUSE STORAGE option, but generally you would be slightly better to use a
larger uniform extent size and not to use the REUSE STORAGE option.

PeopleSoft Recommendations

Over time, PeopleSoft batch processing has moved slightly away from SQR and COBOL.
These types of process cannot be restarted, and so tables used for temporary working storage
within the process can usually be recreated as Global Temporary Tables. This will produce
better performance and scalability that any option that involves retaining the permanent table.

However, we are seeing more processing in PeopleSoft applications done with Application
Engine. If restart has been disabled for an Application Engine program, then temporary
records can also be rebuilt as Global Temporary Tables because their contents does not need
to be preserved for another session to pick up.

Otherwise, move the temporary records and their indexes to tablespace with a 32Kb block
size. The change of assigned tablespace can be managed within Application Designer, and
released like any other patch or customisation. A 32Kb buffer cache must be created in the
database instance. Sizing this is going to be a trade-off between how much memory can be
taken from other activities to cache just working storage tables, and how much physical I/O
you are going to have to wait for. Oracle’s Automatic Shared Memory Management is of no
assistance here, the KEEP, RECYCLE, and other block size buffer caches must be sized
manually (see Oracle Reference Manual for SGA_TARGET).

No change to the application code is required. There is no performance improvement to be

obtained by customising the application code, either to add the REUSE STORAGE option to
the TRUNCATE TABLE commands, nor to use DELETE commands instead.

©G0-FASTER CONSULTANCY LTD. - CONFIDENTIAL FACTORS AFFECTING CONCURRENT TRUNCATE DURING BATCH PROCESSES 11

TECHNICAL NOTE - LOCAL_WRITE_WAIT.DOC 30 JuLy 2009

Oracle Bug 4224840/4260477

Unfortunately, nothing is quite as simple as it seems. If you have a transaction that locks more
than 4095 rows in a 32Kb block you can encounter block corruption (this is bug 4224840).
The fix/workaround in Oracle 10g (bug 4260477) is that a transaction will fail with this
message before the corruption occurs8.

ORA-08007: Further changes to this block by this transaction not

allowed

This will not be resolved until Oracle 11g, however, it does not occur with smaller block sizes.

The workaround is either to commit more frequently, or to move the table concerned back to a
tablespace with a smaller block size. I have run into this with Time & Labor in a particular
scenario.

8 See http://hemantoracledba.blogspot.com/2008/08/testing-bug-4260477-fix-for-bug-
4224840.html for an excellent explanation of this problem, and a test script to reproduce it.

FACTORS AFFECTING CONCURRENT TRUNCATE DURING BATCH PROCESSES 12 ©G0-FASTER CONSULTANCY LTD. - CONFIDENTIAL

