

G O - F A S T E R CONS U L T A N C Y L T D . - CON F I D E N T I A L F A C TO RS A F F E C T I N G CON CU RR EN T T RUN CA T E D UR I N G B A T C H P R OC E S S E S 1

T E C H N I C A L N O T E

FACTORS AFFECTING

CONCURRENT TRUNCATE

DURING BATCH PROCESSES

Prepared By David Kurtz, Go-Faster Consultancy Ltd.

Technical Note

Version 1.00

Thursday 2 April 2009

(E-mail: david.kurtz@go-faster.co.uk, telephone +44-7771-760660)

File: local_write_wait.doc, 2 April 2009

Contents

Introduction.. 2

Real Problems .. 3

Test .. 5

Test 1 ... 6
Scalability .. 9
Global Temporary Tables .. 10

General Recommendations .. 10

PeopleSoft Recommendations ... 11
Oracle Bug 4224840/4260477 ... 12

T E C HN I C A L NO T E - L O C A L _WR I T E _WA I T .D OC 3 0 J U L Y 2 0 0 9

F A C TO RS A F F E C T I N G CON CU RR EN T T RUN CA T E D UR I N G B A T C H P R OC E S S E S 2 G O - F A S T E R CONS U L T A N C Y L T D . - CON F I D E N T I A L

Introduction

Over the past year, I have seen problems with Local Write Wait1 in the Oracle database on

two different Oracle systems. One occasion was in a PeopleSoft Time and Labour batch

process, the other was in a custom PL/SQL process in non-PeopleSoft system.

In both cases, normal tables in the databases were being used for temporary working storage

before that data was then written to another table. The content of the working storage tables

was then cleared out by periodically truncating them. In order to increase overall batch

throughput, several instances of the program were run in parallel. The resulting concurrent

truncate operations contended with each other, and the processes did not scale well.

I have written about this subject previously in my blog2. These problems have prompted me

to do some research and testing. I am now able to make definite recommendations.

Oracle Note 334822.1 (which I have also quoted before) provides a good technical description

of the database’s internal behaviour. It warns that 'processes that involve temporary tables

being truncated and repopulated in multiple, concurrent batch streams may present this

situation. The underlying problem is [that the Oracle database has] to write the object's dirty

buffers to disk prior to actually truncating or dropping the object. This ensures instance

recoverability and avoids a stuck recovery. It seems at first glance perfectly reasonable to

simply truncate a temporary table, then repopulate for another usage. And then to do the

temporary populate/truncate operations in concurrent batches to increase throughput.

‘However, in reality the concurrent truncates get bogged down as the database write process

gets busy flushing those dirty block buffers from the buffer cache . You will see huge CI

enqueue waits.

‘The foreground process first acquires the RO enqueue in exclusive mode so that an object

can be flushed out of buffer cache. Then the CI enqueue is held so that cross instance calls

(CIC) can be issued to background processes. The CKPT process executes the CIC by

scanning the whole buffer cache for the candidate blocks and moves the dirty blocks to a

special list so that the DBWR [database writer] processes can write them out. This CIC

completes after all the blocks have been either written out or invalidated. The RO enqueue is

then released by the foreground so that another session can proceed with its drop or truncate

operation’.

Put simply; truncate (and drop) operations serialise. Only one process can truncate at any one

time. If you have multiple concurrent processes all trying to truncate their own working

storage tables, you could experience performance problems. Such processes not scale well as

the number of concurrent processes increases.

1 My thanks to Jonathan Lewis (www.jlcomp.demon.co.uk,

http://jonathanlewis.wordpress.com) for his assistance in understanding this issue. Any

mistakes remain my own.

2 http://blog.psftdba.com/2008/01/global-temporary-tables-and-peoplesoft.html

3 0 J U L Y 2 0 0 9 T E C HN I C A L NO T E - L O C A L _WR I T E _WA I T .D OC

G O - F A S T E R CONS U L T A N C Y L T D . - CON F I D E N T I A L F A C TO RS A F F E C T I N G CON CU RR EN T T RUN CA T E D UR I N G B A T C H P R OC E S S E S 3

Real Problems

In the case of the non-PeopleSoft PL/SQL process, I was able to recreate the working storage

tables as Global Temporary Tables (GTTs) that deleted the rows on commit because the

process committed only when each transaction was complete. Local write wait totally

disappeared in this case. Temporary objects do not need to be recovered, so this mechanism

does not apply to them.

The PeopleSoft scenario involved one of the ‘Time & Labor’ batch processes,

TL_TIMEADMIN. However, GTTs cannot easily be introduced into the T&L batches

because there are ‘restartable’. Therefore, the contents of temporary working storage tables

need to be preserved after the process and its session terminates. This precludes the use of

GTTs.

Below is an event profile produced from an Oracle 10g SQL Trace of an instance of

TL_TIMEADMIN. Several other instances of the same program were running concurrently.

- Time per Call - Event Name % Time Seconds Calls

Avg Min Max

local write wait 19.9% 25.7509s 897 0.0287s 0.0000s 0.9845s

unaccounted-for time 19.0% 24.6180s

EXEC calls [CPU] 17.9% 23.2000s 41,398 0.0005s 0.0000s 1.9700s

db file sequential read 13.1% 16.9244s 7,745 0.0021s 0.0001s 0.0970s

enq: RO - fast object reuse 11.2% 14.5646s 272 0.0535s 0.0000s 1.8118s

PARSE calls [CPU] 5.6% 7.2300s 15,241 0.0004s 0.0000s 0.8400s

You can see that the combination of ‘Local Write Wait’ and ‘enq: RO - fast object reuse’

account for 31% of the total response time. This is a significant proportion of the total

response time.

T E C HN I C A L NO T E - L O C A L _WR I T E _WA I T .D OC 3 0 J U L Y 2 0 0 9

F A C TO RS A F F E C T I N G CON CU RR EN T T RUN CA T E D UR I N G B A T C H P R OC E S S E S 4 G O - F A S T E R CONS U L T A N C Y L T D . - CON F I D E N T I A L

Individual truncate commands are taking anything up to 1.8 seconds. This example from the

same process is typical.

- Seconds - - Logical Reads - Call Cache

Misses

Count

CPU Elapsed

Physical

Reads

Consistent Current

Rows

Exec 0 1 0.0300s 1.6489s 17 197 84 0

- Time per Call - Event Name %

Time

Seconds Calls

Avg Min Max

local write wait 53.1% 0.8684s 7 0.1241s 0.0313s 0.5529s

enq: RO - fast object reuse 42.4% 0.6938s 2 0.3469s 0.1896s 0.5041s

db file sequential read 2.6% 0.0421s 17 0.0024s 0.0002s 0.0184s

Total 100.0% 1.6362s

• 'local write wait' occurs (as the name suggests) when the session is waiting for its

own write operations. The RO enqueue is used to protect the buffer cache chain

while it is scanned for dirty blocks in an object for the database writer to then write to

the data files.

• ‘enq: RO - fast object reuse’ occurs when a process waits to acquire the RO enqueue,

in other words, while somebody else is truncating or dropping an object.

Two factors affect the time for which the RO enqueue is held:

i. The time taken to write the blocks to disk. Processes that are frequently truncating

temporary working storage are also doing a lot of DML operations to populate the

working storage and other tables. The disks under the data files are going to be busy.

If the disk becomes a bottleneck, the duration of the local write wait will certainly

increase.

ii. The time taken to scan the buffer cache for dirty blocks to be written to disk and

flushed from cache. The larger the buffer cache, the longer it will take to find these

blocks.

The Metalink note also suggests using a different block size, saying that “a separate buffer

pool for temporary tables will also reduce RO enqueue”. It is not clear whether it is more

important to have a different block size or a separate buffer pool. I wanted to find out which

factor was more important.

3 0 J U L Y 2 0 0 9 T E C HN I C A L NO T E - L O C A L _WR I T E _WA I T .D OC

G O - F A S T E R CONS U L T A N C Y L T D . - CON F I D E N T I A L F A C TO RS A F F E C T I N G CON CU RR EN T T RUN CA T E D UR I N G B A T C H P R OC E S S E S 5

Test

I created a simple test to model the behaviour of T&L. I created pairs of simple tables,

populated one of each pair, and then repeatedly copied the data back and forth between them,

truncating the source after the copy.

INSERT INTO lwr12 SELECT * FROM lwr11;

TRUNCATE TABLE lwr11;

INSERT INTO lwr11 SELECT * FROM lwr12;

TRUNCATE TABLE lwr12;

I wanted to test the effect of various options:

• Block Size: I created tables in tablespaces with 8Kb, 16kb, 32KB blocks. I also

repeated the tests in databases with a default block size of 8kb and 16kb, but on the

same physical server.

• Buffer Pool: I also created a RECYCLE pool for the default block size.

• Extent Size: I created tables with an automatically allocated extents size and with a

larger uniform extent size. I only tested a 1Mb uniform extent size

• REUSE STORAGE: I tested the effect of truncating the tables with this option.

• Delete: I wanted to compare the performance of delete (which has to write undo

information to the redo logs) with truncate (that will serialise on the RO enqueue and

wait for local writes).

• Global Temporary Tables: I want to test the behaviour of both truncate and delete on

GTTs.

• Concurrency: I ran 5 and 10 test scripts concurrently to see how truncate scales.

• Indexes: I repeated tests with and without indexes on the temporary tables.

The test script has evolved into a PL/SQL package procedure, mainly so that the tests could be

submitted to and run concurrently by the Oracle job scheduler. There are also procedures to

create, populate, and drop the pairs of working storage tables. It is available on my website3.

I have run the tests on Oracle 10.2.0.3 on various platforms with similar results.

3 The test script and package procedure can be downloaded from http://www.go-

faster.co.uk/scripts.htm#lwr


G

O
-F

A
S
T
E
R
 C

O
N
S
U
L
T
A
N
C
Y
 L

T
D
.
-
C

O
N
F
ID

E
N
T
IA

L

F
A
C
T
O
R
S
 A

F
F
E
C
T
IN

G
 C

O
N
C
U
R
R
E
N
T
 T

R
U
N
C
A
T
E
 D

U
R
IN

G
 B

A
T
C
H
 P

R
O
C
E
S
S
E
S
 6

T
e
s
t
1

E
v
en
 o
n
 a
 l
ar
g
e
m
u
lt
i-
C
P
U
 s
e
rv
er
 I
 f
o
u
n
d
 5
 c
o
n
cu
rr
e
n
t
p
ro
ce
ss
es
 w
a
s
m
o
re
 t
h
a
n
 s
u
ff
ic
ie
n
t
to
 t
h
e
ca
u
se
 l
o
ca
l
w
ri
te
 w
ai
t.

•

8
K
b
 d
ef
au
lt
 b
lo
ck
 s
iz
e

•

5
 c
o
n
cu
rr
en
t
p
ro
ce
ss
es

•

1
0
0
 t
ru
n
ca
te
s
p
er
 p
ro
ce
ss

B
lo
c
k

S
iz
e

B
u
ff
e
r

P
o
o
l

T
a
b
le
s
p
a
c
e

T
y
p
e

E
la
p
s
e
d

D
u
ra
ti
o
n

T
o
ta
l

C
P
U

e
n
q
:

R
O

L
o
c
a
l
W
ri
te

W
a
it

R
o
w
 C
a
c
h
e

L
o
c
k

L
a
tc
h

F
re
e

O
th
e
rs

8
K

D
E
F
A
U
L
T

A
u
to
a
llo
c
a
te

1
7
1
4

9
3
.3
7

8
.6
8

5
1
.1
5

2
5
.2
0

6
.6
9

1
.6
5

8
K

D
E
F
A
U
L
T

U
n
if
o
rm

 1
M

1
4
3

9
8
.3
3

4
.4
4

6
1
.7
2

2
9
.6
2

0
.1
3

2
.4
2

8
K

R
E
C
Y
C
L
E

A
u
to
a
llo
c
a
te

2
0
1

1
0
5
.4
3

9
.4
8

5
9
.9
6

2
7
.6
8

6
.2
2

2
.0
9

8
K

R
E
C
Y
C
L
E

U
n
if
o
rm

 1
M

1
6
2

9
7
.5
8

4
.6
5

4
5
.5
3

2
5
.7
2

0
.0
4

1
8
.1
6
5

3
.4
8

1
6
K

A
u
to
a
llo
c
a
te

1
3
7

9
3
.7
1

8
.1
8

5
4
.6
1

2
1
.0
8

8
.2
8

1
.5
6

1
6
K

U
n
if
o
rm

 1
M

1
1
3

8
2
.5
7

4
.1
0

5
7
.3
4

1
9
.0
2

0
.0
6

2
.0
5

3
2
K

A
u
to
a
llo
c
a
te

1
3
3

7
4
.9
7

7
.8
0

3
8
.0
3

2
1
.3
0

6
.0
7

1
.7
7

D
e
fa
u
lt

3
2
K

U
n
if
o
rm

 1
M

9
9
6

6
1
.9
9

4
.1
3

3
2
.2
6

2
2
.3
7

0
.0
0

3
.2
3

8
K

D
E
F
A
U
L
T

A
u
to
a
llo
c
a
te

1
9
0

9
8
.8
2

3
.5
4

5
9
.4
1

3
2
.1
6

3
.7
1

8
K

D
E
F
A
U
L
T

U
n
if
o
rm

 1
M

1
5
1

9
3
.6
7

3
.2
2

5
7
.9
8

3
0
.8
9

1
.5
8

8
K

R
E
C
Y
C
L
E

A
u
to
a
llo
c
a
te

1
8
0

1
0
3
.0
6

3
.3
9

6
6
.1
0

3
2
.0
0

1
.5
7

8
K

R
E
C
Y
C
L
E

U
n
if
o
rm

 1
M

1
4
3

8
2
.7
6

2
.9
6

5
2
.2
8

2
6
.2
5

1
.2
7

1
6
K

A
u
to
a
llo
c
a
te

1
3
1

8
0
.6
9

3
.0
7

5
2
.1
8

2
4
.3
6

1
.0
8

1
6
K

U
n
if
o
rm

 1
M

1
2
3

7
9
.2
2

2
.9
1

5
3
.7
4

2
0
.4
6

2
.1
1

3
2
K

A
u
to
a
llo
c
a
te

1
2
8

6
6
.7
7

3
.1
4

4
1
.6
7

2
0
.5
8

1
.3
8

R
e
u
s
e

S
to
ra
g
e

3
2
K

U
n
if
o
rm

 1
M

1
1
0

6
6
.8
5

3
.0
3

3
9
.1
7

2
3
.0
5

1
.6
0

4
 T
h
is
 i
s
th
e
d
ef
a
u
lt
 s
ce
n
ar
io
 f
o
r
m
o
st
 s
y
st
e
m
s.

D
e
fa
u
lt
 b
u
ff
e
r
p
o
o
l
an
d
 b
lo
ck
 s
iz
e.

T
h
e
w
h
o
le
 t
es
t
to
o
k
 1
7
1
 s
ec
o
n
d
s,
 o
f
w
h
ic
h
 t
h
e
tr
u
n
ca
te
 a
cc
o
u
n
te
d
 f
o
r

9
3
 s
ec
o
n
d
s.

5
 T
h
e
o
cc
u
rr
en
ce
 o
f
w
ai
t
‘l
at
c
h
 f
re
e’
 i
n
 t
h
is
 e
v
en
t
is
 a
n
o
m
al
o
u
s.

T
h
is
 t
es
t
is
 t
h
e
o
n
ly
 o
cc
u
rs
 o
f
su
c
h
 a
 w
ai
t
fr
o
m
 s
e
v
er
al
 r
ep
et
it
io
n
s
o
f
th
e
te
st
.

6
 T
h
is
 w
as
 b
es
t
re
su
lt
.
 3
2
K
b
 b
lo
ck
 s
iz
e,
 w
it
h
 a
 u
n
if
o
rm

 e
x
te
n
t
si
ze
 o
f
1
M
.

3
0
 J

U
L
Y
 2

0
0
9

T
E
C
H
N
IC

A
L
 N

O
T
E
 -

 L
O
C
A
L
_
W

R
IT

E
_
W

A
IT
.D

O
C


G

O
-F

A
S
T
E
R
 C

O
N
S
U
L
T
A
N
C
Y
 L

T
D
.
-
C

O
N
F
ID

E
N
T
IA

L

F
A
C
T
O
R
S
 A

F
F
E
C
T
IN

G
 C

O
N
C
U
R
R
E
N
T
 T

R
U
N
C
A
T
E
 D

U
R
IN

G
 B

A
T
C
H
 P

R
O
C
E
S
S
E
S
 7

•

T
h
e
fi
g
u
re
s
in
 b
o
ld
 a
re
 t
h
e
ef
fe
ct
iv
e
st
ar
ti
n
g
 p
o
in
t
fo
r
m
o
st
 s
y
st
e
m
s,
 a
n
d
 t
h
e
p
es
t
p
o
ss
ib
le
 o
u
tc
o
m
e
b
y
 u
si
n
g
 a
 3
2
K
b
 t
ab
le
sp
ac
e
an
d
 a
 l
ar
g
e
u
n
if
o
rm

ex
te
n
t
si
ze
 –
 I
 u
se
d
 1
M
.

•

F
o
r
co
m
p
ar
is
o
n
,
th
es
e
ar
e
th
e
re
su
lt
s
w
h
e
n
 t
h
e
ro
w
s
ar
e
D
E
L
E
T
E
d
 i
n
st
ea
d
.

B
lo
c
k

S
iz
e

B
u
ff
e
r

P
o
o
l

T
a
b
le
s
p
a
c
e

T
y
p
e

E
la
p
s
e
d

D
u
ra
ti
o
n

T
o
ta
l

C
P
U

L
o
g
 B
u
ff
e
r

S
p
a
c
e

L
o
g
 F
ile
 S
w
it
c
h

C
o
m
p
le
ti
o
n

L
o
g
 F
ile
 S
w
it
c
h

(I
n
c
o
m
p
le
te
)

F
re
e

B
u
ff
e
r

W
a
it
s

O
th
e
rs

8
K

D
E
F
A
U
L
T

A
u
to
a
llo
c
a
te

3
0
9

1
9
1
.1
7

7
7
.9
8

1
.2
9

4
9
.9
3

6
3
.3
1

0
.0
0

-1
.3
4

8
K

D
E
F
A
U
L
T

U
n
if
o
rm

 1
M

2
9
5

1
8
3
.5
5

7
6
.2
4

1
.8
3

5
0
.4
2

5
3
.9
5

0
.0
0

1
.1
1

8
K

R
E
C
Y
C
L
E

A
u
to
a
llo
c
a
te

2
8
1

1
5
9
.5
8

7
5
.5
6

0
.4
3

3
6
.5
3

4
6
.1
9

0
.0
0

0
.8
7

8
K

R
E
C
Y
C
L
E

U
n
if
o
rm

 1
M

2
7
1

1
6
6
.2
1

7
5
.7
2

0
.9
8

3
5
.1
3

5
4
.6
5

0
.0
0

-0
.2
7

1
6
K

A
u
to
a
llo
c
a
te

2
5
9

1
8
6
.7
0

7
1
.3
7

5
.3
3

4
5
.6
0

4
7
.1
6

4
.6
1

1
2
.6
3

1
6
K

U
n
if
o
rm

 1
M

2
5
8

1
9
9
.2
0

7
1
.9
0

4
.0
6

3
3
.5
4

3
9
.2
7

2
5
.9
3

2
4
.5
0

3
2
K

A
u
to
a
llo
c
a
te

2
7
3

1
6
5
.3
8

7
2
.6
9

3
.4
6

4
5
.7
9

3
7
.4
4

0
.0
0

6
.0
0

D
e
le
te

3
2
K

U
n
if
o
rm

 1
M

2
6
1

1
6
4
.9
5

7
1
.4
1

4
.6
6

4
0
.4
2

4
5
.4
8

3
.9
7

-0
.9
9

•

T
h
e
E
la
p
se
d
 D
u
ra
ti
o
n
 i
s
fo
r
th
e
en
ti
re
 t
es
t,
 i
n
cl
u
d
in
g
 t
h
e
ti
m
e
ta
k
en
 t
o
 i
n
se
rt
 r
o
w
s
in
to
 t
h
e
te
m
p
o
ra
ry
 t
ab
le
s.

•

T
h
e
n
eg
at
iv
e
n
u
m
b
er
s
ar
e
ca
u
se
d
 b
y
 r
o
u
n
d
in
g
 e
rr
o
rs
 i
n
 T
K
P
R
O
F

T
E
C
H
N
IC

A
L
 N

O
T
E
 -

 L
O
C
A
L
_
W

R
IT

E
_
W

A
IT
.D

O
C

3
0
 J

U
L
Y
 2

0
0
9

F
A
C
T
O
R
S
 A

F
F
E
C
T
IN

G
 C

O
N
C
U
R
R
E
N
T
 T

R
U
N
C
A
T
E
 D

U
R
IN

G
 B

A
T
C
H
 P

R
O
C
E
S
S
E
S
 8



G
O
-F

A
S
T
E
R
 C

O
N
S
U
L
T
A
N
C
Y
 L

T
D
.
-
C

O
N
F
ID

E
N
T
IA

L

T
e
s
t
2

•

8
K
b
 d
ef
au
lt
 b
lo
ck
 s
iz
e

•

1
0
 c
o
n
cu
rr
en
t
p
ro
ce
ss
es

•

1
0
0
 t
ru
n
ca
te
s
p
er
 p
ro
ce
ss

B
lo
c
k

S
iz
e

B
u
ff
e
r

P
o
o
l

T
a
b
le
s
p
a
c
e

T
y
p
e

E
la
p
s
e
d

D
u
ra
ti
o
n

T
o
ta
l

C
P
U

e
n
q
:

R
O

L
o
c
a
l
W
ri
te

W
a
it

R
o
w
 C
a
c
h
e

L
o
c
k

L
a
tc
h

F
re
e

O
th
e
rs

8
K

D
E
F
A
U
L
T

A
u
to
a
llo
c
a
te

2
3
2

1
3
9
.8
6

8
.9
1

6
3
.2
7

5
0
.4
7

1
0
.3
6

6
.8
5

8
K

D
E
F
A
U
L
T

U
n
if
o
rm

 1
M

2
2
5

1
7
8
.5
1

4
.6
3

9
2
.6
5

7
5
.6
1

0
.1
0

5
.5
2

8
K

R
E
C
Y
C
L
E

A
u
to
a
llo
c
a
te

2
4
3

1
7
4
.2
5

8
.9
6

1
0
1
.5
8

4
8
.1
4

1
2
.5
5

3
.0
2

8
K

R
E
C
Y
C
L
E

U
n
if
o
rm

 1
M

2
2
4

1
7
5
.8
5

4
.4
9

9
3
.4
1

6
9
.1
0

0
.0
7

8
.7
8

1
6
K

A
u
to
a
llo
c
a
te

1
9
8

1
4
3
.8
1

8
.2
7

7
2
.6
2

5
0
.5
8

8
.1
0

4
.2
4

1
6
K

U
n
if
o
rm

 1
M

2
0
9

1
6
5
.6
2

4
.4
0

9
5
.5
9

5
9
.7
5

0
.1
4

5
.7
4

3
2
K

A
u
to
a
llo
c
a
te

1
6
6

1
2
6
.2
1

7
.8
3

5
7
.8
2

4
8
.8
6

4
.0
2

7
.6
8

D
e
fa
u
lt

3
2
K

U
n
if
o
rm

 1
M

1
7
7

1
3
7
.3
3

4
.6
4

7
3
.9
5

5
2
.3
3

0
.1
1

6
.3
0

8
K

D
E
F
A
U
L
T

A
u
to
a
llo
c
a
te

2
8
9

1
7
5
.7
9

4
.5
8

9
9
.0
8

6
8
.1
8

3
.9
5

8
K

D
E
F
A
U
L
T

U
n
if
o
rm

 1
M

2
6
5

1
7
8
.2
6

4
.1
3

1
0
6
.3
8

6
3
.7
6

3
.9
9

8
K

R
E
C
Y
C
L
E

A
u
to
a
llo
c
a
te

2
6
0

1
7
2
.0
0

4
.5
2

9
6
.4
8

6
7
.4
8

3
.5
2

8
K

R
E
C
Y
C
L
E

U
n
if
o
rm

 1
M

3
0
6

1
8
6
.6
9

4
.3
9

1
1
1
.0
4

6
7
.2
5

4
.0
1

1
6
K

A
u
to
a
llo
c
a
te

2
0
7

1
6
7
.7
8

3
.7
9

6
1
.2
7

9
7
.7
7

4
.9
5

1
6
K

U
n
if
o
rm

 1
M

2
2
7

1
7
6
.9
1

3
.6
4

8
5
.5
0

8
0
.6
3

7
.1
4

3
2
K

A
u
to
a
llo
c
a
te

1
7
1

1
4
1
.8
9

3
.4
0

5
3
.4
2

7
9
.5
9

5
.4
8

R
e
u
s
e

S
to
ra
g
e

3
2
K

U
n
if
o
rm

 1
M

2
3
6

1
5
2
.6
6

3
.6
2

7
6
.0
1

6
7
.3
4

5
.6
9

B
lo
c
k

S
iz
e

B
u
ff
e
r

P
o
o
l

T
a
b
le
s
p
a
c
e

T
y
p
e

E
la
p
s
e
d

D
u
ra
ti
o
n

T
o
ta
l

C
P
U

L
o
g
 B
u
ff
e
r

S
p
a
c
e

L
o
g
 F
ile
 S
w
it
c
h

C
o
m
p
le
ti
o
n

L
o
g
 F
ile
 S
w
it
c
h

(I
n
c
o
m
p
le
te
)

F
re
e

B
u
ff
e
r

W
a
it
s

O
th
e
rs

8
K

D
E
F
A
U
L
T

A
u
to
a
llo
c
a
te

7
6
8

4
9
8
.9
0

9
0
.6
7

5
3
.7
0

9
4
.9
1

2
5
5
.6
5

0
.0
0

3
.9
7

8
K

D
E
F
A
U
L
T

U
n
if
o
rm

 1
M

6
4
5

4
4
7
.0
1

8
9
.3
1

5
4
.1
6

1
1
1
.6
0

1
9
3
.2
9

0
.0
0

-1
.3
5

8
K

R
E
C
Y
C
L
E

A
u
to
a
llo
c
a
te

6
6
6

4
1
3
.2
1

8
6
.8
7

4
4
.9
6

7
8
.4
9

1
7
2
.6
1

1
5
.3
4

1
4
.9
4

8
K

R
E
C
Y
C
L
E

U
n
if
o
rm

 1
M

6
7
5

4
1
7
.9
6

8
8
.4
4

4
7
.7
5

9
5
.8
4

1
7
8
.4
8

7
.8
6

-0
.4
1

1
6
K

A
u
to
a
llo
c
a
te

5
9
0

4
3
6
.3
6

8
2
.6
6

5
2
.1
8

9
7
.2
0

1
3
3
.5
6

7
0
.5
5

0
.2
1

1
6
K

U
n
if
o
rm

 1
M

6
5
7

4
5
2
.2
5

8
1
.5
0

2
0
.3
8

5
4
.8
9

5
9
.9
7

2
1
0
.2
4

2
5
.2
7

3
2
K

A
u
to
a
llo
c
a
te

5
7
9

3
9
0
.2
8

8
0
.3
8

5
8
.1
7

8
8
.4
2

1
0
6
.7
2

5
6
.4
2

0
.1
7

D
e
le
te

3
2
K

U
n
if
o
rm

 1
M

5
9
6

3
8
3
.5
0

8
0
.4
4

5
7
.2
7

8
3
.7
7

1
1
3
.5
3

4
9
.1
2

-0
.6
3

G O - F A S T E R CONS U L T A N C Y L T D . - CON F I D E N T I A L F A C TO RS A F F E C T I N G CON CU RR EN T T RUN CA T E D UR I N G B A T C H P R OC E S S E S 9

Scalabi l i ty

The following table compares the timing for 10 concurrent tests to the corresponding timings

for 5. Scalability is calculated as

 t10

s = ���� - 1

 2*t5

Where:

• tn = timing for n concurrent processes

• s = scalability

So, if the time for 10 concurrent processes was:

• the same as that for 5 processes, that would be 100% scalability. The number of

processes has no bearing on performance.

• exactly twice that for 5 processes, that would be 0% scalability. The overall

throughput does not improve as the number of processes increases

• more than twice that for 5 processes, that would be negative scalability. The overall

throughput of the processes goes down as the number of processes increases

Block
Size

Buffer
Pool

Tablespace
Type

Elapsed
Duration

Total CPU
enq:
RO

Local
Write
Wait

Row
Cache
Lock

8K DEFAULT Autoallocate 47% 34% 95% 62% 0% 29%

8K DEFAULT Uniform 1M 27% 10% 92% 33% -22% 160%

8K RECYCLE Autoallocate 65% 21% 112% 18% 15% -1%

8K RECYCLE Uniform 1M 45% 11% 107% -3% -26% 14%

16K Uniform 1M 8% 0% 86% 20% -36% -14%

32K Autoallocate 60% 19% 99% 32% -13% 202%

Default

32K Uniform 1M 12% -10% 78% -13% -15%

8K DEFAULT Autoallocate 31% 12% 55% 20% -6%

8K DEFAULT Uniform 1M 14% 5% 56% 9% -3%

8K RECYCLE Autoallocate 38% 20% 50% 37% -5%

8K RECYCLE Uniform 1M -7% -11% 35% -6% -22%

32K Autoallocate 50% -6% 85% 56% -48%

Reuse
Storage

32K Uniform 1M -7% -12% 67% 3% -32%

 Block Size Buffer Pool Tablespace Type Elapsed Duration Total

8K DEFAULT Autoallocate -20% -23%

8K DEFAULT Uniform 1M -9% -18%

8K RECYCLE Autoallocate -16% -23%

8K RECYCLE Uniform 1M -20% -20%

32K Autoallocate -6% -15%

Delete

32K Uniform 1M -12% -14%

T E C HN I C A L NO T E - L O C A L _WR I T E _WA I T .D OC 3 0 J U L Y 2 0 0 9

F A C TO RS A F F E C T I N G CON CU RR EN T T RUN CA T E D UR I N G B A T C H P R OC E S S E S 1 0 G O - F A S T E R CONS U L T A N C Y L T D . - CON F I D E N T I A L

Global Temporary Tab les

For the sake of completeness I have also tested the behaviour of Global Temporary Tables on

a database with an 8Kb block size. The mechanism described above does not apply to

temporary objects, so there is no wait at all on either local write wait, RO enqueue, or row

cache lock. Also, DML operations on GTTs do not generate redo. Hence, with one exception,

the test performs better than with permanent objects.

Elapsed Duration Number of Concurrent Processes

Operation GTT Type 5 10

PRESERVE 19 30
Truncate DELETE 7 7

PRESERVE 154 290
Delete DELETE 6 4

The exception is the delete operation on tables that preserve rows on commit. In this case the

delete operation generates undo and writes to the redo log files can still become a bottleneck.

General Recommendations

If you have to store temporarily working data in a database table, it is much better to use a

Global Temporary Table, although the design of the application may preclude this. It is not

possible to do this with data used by restartable Application Engine processes, because the

contents of the GTT would be lost when the process terminates.

The Metalink note references unpublished bug 414780 in which a PeopleSoft customer

reported this problem, but “they seemed to fix it by changing some PeopleSoft code to

implement delete7 rather than truncate on small temporary tables”. However, my tests show

that this probably degraded performance further. The individual delete statements take longer

than the truncate operations, and the overall test times increased. Although the truncate

operations serialise on the RO enqueue and wait for local writes, this is still better than

deleting the data and waiting for the undo information to be written to the redo log.

Furthermore, although the truncate operations did not scale well, the delete operations

exhibited negative scalability for the same volumes and concurrency. They became

bottlenecked on redo log.

Using a recycle pool of the same block size as the rest of the database was not effective;

possibly because these pools use the same LRU latches.

Using a larger non-default block size improved performance of truncate, and of the overall

test. The performance with 32Kb blocks was better than with 16Kb.

Using a larger uniform extent size produced the best the performance for truncate and the test

as a whole. Fewer, larger extents were involved, hence less time was spent on CPU and row

cache lock. The overall thoughput truncate operations degraded as the number of processes

increased, although, the throughput of the test as whole did scale.

7 You could do this by reducing the number of temporary table instances available on all

Application Engine programs that reference the table to 0, forcing use the shared instance, and

automatically changing the behaviour of the %TruncateTable macro to delete.

3 0 J U L Y 2 0 0 9 T E C HN I C A L NO T E - L O C A L _WR I T E _WA I T .D OC

G O - F A S T E R CONS U L T A N C Y L T D . - CON F I D E N T I A L F A C TO RS A F F E C T I N G CON CU RR EN T T RUN CA T E D UR I N G B A T C H P R OC E S S E S 1 1

The presence or absence of indexes did not have a significant effect on the relative test

timings, and does not alter my advice.

The effect of truncating with the REUSE STORAGE option is less clear cut. There are no

waits on row cache lock because the blocks do not have to be cleared out of the buffer cache,

but on the other hand more time is spent on local write wait because all the dirty blocks have

to be written to disk, hence the RO enqueue is held for longer and more time is spent on enq:

RO - fast object reuse. If you are using an AUTOALLOCATE tablespace then you would be

better to use REUSE STORAGE option, but generally you would be slightly better to use a

larger uniform extent size and not to use the REUSE STORAGE option.

PeopleSoft Recommendat ions

Over time, PeopleSoft batch processing has moved slightly away from SQR and COBOL.

These types of process cannot be restarted, and so tables used for temporary working storage

within the process can usually be recreated as Global Temporary Tables. This will produce

better performance and scalability that any option that involves retaining the permanent table.

However, we are seeing more processing in PeopleSoft applications done with Application

Engine. If restart has been disabled for an Application Engine program, then temporary

records can also be rebuilt as Global Temporary Tables because their contents does not need

to be preserved for another session to pick up.

Otherwise, move the temporary records and their indexes to tablespace with a 32Kb block

size. The change of assigned tablespace can be managed within Application Designer, and

released like any other patch or customisation. A 32Kb buffer cache must be created in the

database instance. Sizing this is going to be a trade-off between how much memory can be

taken from other activities to cache just working storage tables, and how much physical I/O

you are going to have to wait for. Oracle’s Automatic Shared Memory Management is of no

assistance here, the KEEP, RECYCLE, and other block size buffer caches must be sized

manually (see Oracle Reference Manual for SGA_TARGET).

No change to the application code is required. There is no performance improvement to be

obtained by customising the application code, either to add the REUSE STORAGE option to

the TRUNCATE TABLE commands, nor to use DELETE commands instead.

T E C HN I C A L NO T E - L O C A L _WR I T E _WA I T .D OC 3 0 J U L Y 2 0 0 9

F A C TO RS A F F E C T I N G CON CU RR EN T T RUN CA T E D UR I N G B A T C H P R OC E S S E S 1 2 G O - F A S T E R CONS U L T A N C Y L T D . - CON F I D E N T I A L

Oracle Bug 4224840/4260477

Unfortunately, nothing is quite as simple as it seems. If you have a transaction that locks more

than 4095 rows in a 32Kb block you can encounter block corruption (this is bug 4224840).

The fix/workaround in Oracle 10g (bug 4260477) is that a transaction will fail with this

message before the corruption occurs8.

ORA-08007: Further changes to this block by this transaction not

allowed

This will not be resolved until Oracle 11g, however, it does not occur with smaller block sizes.

The workaround is either to commit more frequently, or to move the table concerned back to a

tablespace with a smaller block size. I have run into this with Time & Labor in a particular

scenario.

8 See http://hemantoracledba.blogspot.com/2008/08/testing-bug-4260477-fix-for-bug-

4224840.html for an excellent explanation of this problem, and a test script to reproduce it.

